These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33230119)

  • 1. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme.
    Kaczmarski JA; Mahawaththa MC; Feintuch A; Clifton BE; Adams LA; Goldfarb D; Otting G; Jackson CJ
    Nat Commun; 2020 Nov; 11(1):5945. PubMed ID: 33230119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein.
    Clifton BE; Kaczmarski JA; Carr PD; Gerth ML; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2018 Jun; 14(6):542-547. PubMed ID: 29686357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of oligomerization in the optimization of cyclohexadienyl dehydratase conformational dynamics and catalytic activity.
    East NJ; Clifton BE; Jackson CJ; Kaczmarski JA
    Protein Sci; 2022 Dec; 31(12):e4510. PubMed ID: 36382881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics and enzyme evolution.
    Petrović D; Risso VA; Kamerlin SCL; Sanchez-Ruiz JM
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30021929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.
    Otten R; Pádua RAP; Bunzel HA; Nguyen V; Pitsawong W; Patterson M; Sui S; Perry SL; Cohen AE; Hilvert D; Kern D
    Science; 2020 Dec; 370(6523):1442-1446. PubMed ID: 33214289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum.
    Hsu SK; Lin LL; Lo HH; Hsu WH
    Arch Microbiol; 2004 Mar; 181(3):237-44. PubMed ID: 14749915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution and engineering of enzyme activity through tuning conformational landscapes.
    Damry AM; Jackson CJ
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33903911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of protein dynamics in the evolution of new enzyme function.
    Campbell E; Kaltenbach M; Correy GJ; Carr PD; Porebski BT; Livingstone EK; Afriat-Jurnou L; Buckle AM; Weik M; Hollfelder F; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2016 Nov; 12(11):944-950. PubMed ID: 27618189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.
    González MM; Abriata LA; Tomatis PE; Vila AJ
    Mol Biol Evol; 2016 Jul; 33(7):1768-76. PubMed ID: 26983555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer.
    Ambrus V; Hoffka G; Fuxreiter M
    Sci Rep; 2020 Nov; 10(1):18866. PubMed ID: 33139795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and structural differences between enzyme and nonenzyme homologs.
    Todd AE; Orengo CA; Thornton JM
    Structure; 2002 Oct; 10(10):1435-51. PubMed ID: 12377129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13C isotope effect on the reaction catalyzed by prephenate dehydratase.
    Van Vleet J; Kleeb A; Kast P; Hilvert D; Cleland WW
    Biochim Biophys Acta; 2010 Apr; 1804(4):752-4. PubMed ID: 19948253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple conformational changes in enzyme catalysis.
    Hammes GG
    Biochemistry; 2002 Jul; 41(26):8221-8. PubMed ID: 12081470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.
    Clifton BE; Jackson CJ
    Cell Chem Biol; 2016 Feb; 23(2):236-245. PubMed ID: 26853627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of prephenate dehydratase from Streptococcus mutans.
    Shin MH; Ku HK; Song JS; Choi S; Son SY; Yang HJ; Kim HD; Kim SK; Park IY; Lee SJ
    J Microbiol; 2014 Jun; 52(6):490-5. PubMed ID: 24610334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.