These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33230285)

  • 1. Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning.
    Lee J; Wang N; Turk S; Mohammed S; Lobo R; Kim J; Liao E; Camelo-Piragua S; Kim M; Junck L; Bapuraj J; Srinivasan A; Rao A
    Sci Rep; 2020 Nov; 10(1):20331. PubMed ID: 33230285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma.
    Zhang S; Chiang GC; Magge RS; Fine HA; Ramakrishna R; Chang EW; Pulisetty T; Wang Y; Zhu W; Kovanlikaya I
    Magn Reson Imaging; 2019 Apr; 57():254-258. PubMed ID: 30465868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression.
    Fu FX; Cai QL; Li G; Wu XJ; Hong L; Chen WS
    Magn Reson Imaging; 2024 Sep; 111():168-178. PubMed ID: 38729227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning in the detection of high-grade glioma recurrence using multiple MRI sequences: A pilot study.
    Bacchi S; Zerner T; Dongas J; Asahina AT; Abou-Hamden A; Otto S; Oakden-Rayner L; Patel S
    J Clin Neurosci; 2019 Dec; 70():11-13. PubMed ID: 31648967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR textural analysis on T
    Rui W; Ren Y; Wang Y; Gao X; Xu X; Yao Z
    J Magn Reson Imaging; 2018 Jul; 48(1):74-83. PubMed ID: 29140606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Evaluation of Radiomic Models in Distinguishing Pilocytic Astrocytoma From Cystic Oligodendroglioma With Multiparametric MRI.
    Zhao Y; Lu Y; Li X; Zheng Y; Yin B
    J Comput Assist Tomogr; 2020; 44(6):969-976. PubMed ID: 32976261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodological approach for deep learning to distinguish between meningiomas and gliomas on canine MR-images.
    Banzato T; Bernardini M; Cherubini GB; Zotti A
    BMC Vet Res; 2018 Oct; 14(1):317. PubMed ID: 30348148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AI-based classification of three common malignant tumors in neuro-oncology: A multi-institutional comparison of machine learning and deep learning methods.
    Bathla G; Dhruba DD; Soni N; Liu Y; Larson NB; Kassmeyer BA; Mohan S; Roberts-Wolfe D; Rathore S; Le NH; Zhang H; Sonka M; Priya S
    J Neuroradiol; 2024 May; 51(3):258-264. PubMed ID: 37652263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging.
    Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT.
    Papadomanolakis TN; Sergaki ES; Polydorou AA; Krasoudakis AG; Makris-Tsalikis GN; Polydorou AA; Afentakis NM; Athanasiou SA; Vardiambasis IO; Zervakis ME
    Brain Sci; 2023 Feb; 13(2):. PubMed ID: 36831891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.
    Saeedi S; Rezayi S; Keshavarz H; R Niakan Kalhori S
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):16. PubMed ID: 36691030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.
    Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y
    J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach.
    Latysheva A; Emblem KE; Brandal P; Vik-Mo EO; Pahnke J; Røysland K; Hald JK; Server A
    Neuroradiology; 2019 May; 61(5):545-555. PubMed ID: 30712139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional Neural Network of Multiparametric MRI Accurately Detects Axillary Lymph Node Metastasis in Breast Cancer Patients With Pre Neoadjuvant Chemotherapy.
    Ren T; Lin S; Huang P; Duong TQ
    Clin Breast Cancer; 2022 Feb; 22(2):170-177. PubMed ID: 34384696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI.
    Gupta M; Gupta A; Yadav V; Parvaze SP; Singh A; Saini J; Patir R; Vaishya S; Ahlawat S; Gupta RK
    Neuroradiology; 2021 Aug; 63(8):1227-1239. PubMed ID: 33469693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.