These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3323063)

  • 1. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.
    Opitz N; Lübbers DW
    Int Anesthesiol Clin; 1987; 25(3):177-97. PubMed ID: 3323063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical improvement of the performance of PO2 electrodes.
    Hahn CE; Davis AH; Albery WJ
    Respir Physiol; 1975 Oct; 25(1):109-33. PubMed ID: 241106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line arterial blood gas analysis with optodes: current status.
    Mahutte CK
    Clin Biochem; 1998 Apr; 31(3):119-30. PubMed ID: 9629484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical sensors for clinical monitoring.
    Lübbers DW
    Acta Anaesthesiol Scand Suppl; 1995; 104():37-54. PubMed ID: 7660749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mode antimony electrode for simultaneous measurements of PO2 and pH.
    Sjöberg F; Nilsson G
    Acta Anaesthesiol Scand; 2000 Jan; 44(1):32-6. PubMed ID: 10669268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing of the AVL OPTI 1 portable blood gas analyzer during inflight conditions.
    Maillard D; Ferracci F; Marotte H; Canot S; Minh TT; Finetti P
    Aviat Space Environ Med; 1999 Apr; 70(4):346-50. PubMed ID: 10223272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A new microprocedure for continuous and non-consuming determination of cellular oxygen uptake based on fluorescence quenching].
    Trübel H; Barnikol WK
    Biomed Tech (Berl); 1998 Nov; 43(11):302-9. PubMed ID: 9885416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas sensing in microplates with optodes: influence of oxygen exchange between sample, air, and plate material.
    Arain S; Weiss S; Heinzle E; John GT; Krause C; Klimant I
    Biotechnol Bioeng; 2005 May; 90(3):271-80. PubMed ID: 15772950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarographic pO2 sensors with heparinized membranes for in vitro and continuous in vivo registration.
    Nilsson E; Edwall G; Larsson R; Olsson P
    Scand J Clin Lab Invest; 1981 Oct; 41(6):557-63. PubMed ID: 7336122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous pO2 electrode.
    Vesterager P
    Scand J Clin Lab Invest Suppl; 1977; 146():27-30. PubMed ID: 834956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrode for PN2O and PO2 analysis in blood and gas.
    Albery WJ; Brooks WN; Gibson SP; Hahn CE
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Oct; 45(4):637-43. PubMed ID: 711582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous carbon dioxide and oxygen tension measured at different temperatures in healthy adults.
    Wimberley PD; Grønlund Pedersen K; Olsson J; Siggaard-Andersen O
    Clin Chem; 1985 Oct; 31(10):1611-5. PubMed ID: 3930089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Usefulness of a blood gas analyzer using fluorescent method].
    Ieki M; Hasegawa S
    Rinsho Byori; 1999 Sep; 47(9):861-5. PubMed ID: 10518423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood gas analysis using fluorescence and absorption indicators in optical sensors (optodes) with integrated excitation and fluorescence detection on semiconductor basis.
    Opitz N; Lübbers DW
    Adv Exp Med Biol; 1988; 222():177-81. PubMed ID: 3364239
    [No Abstract]   [Full Text] [Related]  

  • 15. Reliability of cutaneous oxygen measurement by skin sensors with large-size cathodes.
    Eberhard P; Mindt W
    Acta Anaesthesiol Scand Suppl; 1978; 68():20-7. PubMed ID: 279196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel color standards for digital color analysis of optochemical sensor arrays.
    Kalinichev AV; Pokhvishcheva NV; Peshkova MA
    Talanta; 2019 May; 197():638-644. PubMed ID: 30771987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring polythiophene cation-selective optodes for wide pH range sensing.
    Stelmach E; Kaczmarczyk B; Maksymiuk K; Michalska A
    Talanta; 2020 May; 211():120663. PubMed ID: 32070585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH).
    Opitz N; Lubbers DW
    Adv Exp Med Biol; 1987; 215():45-50. PubMed ID: 3118651
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of low concentrations of halothane on the oxygen electrode.
    Maekawa T; Okuda Y; McDowall DG
    Br J Anaesth; 1980 Jun; 52(6):585-7. PubMed ID: 7426229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased resolution power in PO2 analysis at lower PO2 levels via sensitivity enhanced optical PO2 sensors (PO2 optodes) using fluorescence dyes.
    Opitz N; Lübbers DW
    Adv Exp Med Biol; 1984; 180():261-7. PubMed ID: 6534103
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.