These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33230878)

  • 1. Elucidating memory in the brain via single-cell transcriptomics.
    Sullivan KE; Kendrick RM; Cembrowski MS
    J Neurochem; 2021 May; 157(4):982-992. PubMed ID: 33230878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell transcriptomics as a framework and roadmap for understanding the brain.
    Cembrowski MS
    J Neurosci Methods; 2019 Oct; 326():108353. PubMed ID: 31351971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer vision for image-based transcriptomics.
    Stoeger T; Battich N; Herrmann MD; Yakimovich Y; Pelkmans L
    Methods; 2015 Sep; 85():44-53. PubMed ID: 26014038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding Method of Single-cell Spatial Transcriptomics Sequencing.
    Zhou Y; Jia E; Pan M; Zhao X; Ge Q
    Int J Biol Sci; 2020; 16(14):2663-2674. PubMed ID: 32792863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering Brain Complexity Using Single-cell Sequencing.
    Mu Q; Chen Y; Wang J
    Genomics Proteomics Bioinformatics; 2019 Aug; 17(4):344-366. PubMed ID: 31586689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes.
    Armand EJ; Li J; Xie F; Luo C; Mukamel EA
    Neuron; 2021 Jan; 109(1):11-26. PubMed ID: 33412093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology.
    Teves JM; Won KJ
    Mol Cells; 2020 Jul; 43(7):591-599. PubMed ID: 32507771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics.
    Lin S; Liu Y; Zhang M; Xu X; Chen Y; Zhang H; Yang C
    Lab Chip; 2021 Oct; 21(20):3829-3849. PubMed ID: 34541590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved transcriptomics and beyond.
    Crosetto N; Bienko M; van Oudenaarden A
    Nat Rev Genet; 2015 Jan; 16(1):57-66. PubMed ID: 25446315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial transcriptomics and the kidney.
    Melo Ferreira R; Gisch DL; Eadon MT
    Curr Opin Nephrol Hypertens; 2022 May; 31(3):244-250. PubMed ID: 35125393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA: Putting transcriptomics in its place.
    Burgess DJ
    Nat Rev Genet; 2015 Jun; 16(6):319. PubMed ID: 25948245
    [No Abstract]   [Full Text] [Related]  

  • 16. Advances in Transcriptomics: Investigating Cardiovascular Disease at Unprecedented Resolution.
    Wirka RC; Pjanic M; Quertermous T
    Circ Res; 2018 Apr; 122(9):1200-1220. PubMed ID: 29700068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Placing RNA in context and space - methods for spatially resolved transcriptomics.
    Strell C; Hilscher MM; Laxman N; Svedlund J; Wu C; Yokota C; Nilsson M
    FEBS J; 2019 Apr; 286(8):1468-1481. PubMed ID: 29542254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease.
    Roth R; Kim S; Kim J; Rhee S
    BMB Rep; 2020 Aug; 53(8):393-399. PubMed ID: 32684243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics.
    Huang J; Sheng J; Wang D
    Commun Biol; 2021 Nov; 4(1):1308. PubMed ID: 34799674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.