These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33231252)
1. Strain difference in transgene-induced tumorigenesis and suppressive effect of ionizing radiation. Dutta B; Asami T; Imatomi T; Igarashi K; Nagata K; Watanabe-Asaka T; Yasuda T; Oda S; Shartl M; Mitani H J Radiat Res; 2021 Jan; 62(1):12-24. PubMed ID: 33231252 [TBL] [Abstract][Full Text] [Related]
2. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus. Weis S; Schartl M Genetics; 1998 Aug; 149(4):1909-20. PubMed ID: 9691046 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional control analyses of the Xiphophorus melanoma oncogene. Regneri J; Volff JN; Schartl M Comp Biochem Physiol C Toxicol Pharmacol; 2015 Dec; 178():116-127. PubMed ID: 26348392 [TBL] [Abstract][Full Text] [Related]
4. A mutated EGFR is sufficient to induce malignant melanoma with genetic background-dependent histopathologies. Schartl M; Wilde B; Laisney JA; Taniguchi Y; Takeda S; Meierjohann S J Invest Dermatol; 2010 Jan; 130(1):249-58. PubMed ID: 19609310 [TBL] [Abstract][Full Text] [Related]
5. Expression regulation triggers oncogenicity of xmrk alleles in the Xiphophorus melanoma system. Regneri J; Schartl M Comp Biochem Physiol C Toxicol Pharmacol; 2012 Jan; 155(1):71-80. PubMed ID: 21527356 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary origin and molecular biology of the melanoma-inducing oncogene of Xiphophorus. Schartl A; Dimitrijevic N; Schartl M Pigment Cell Res; 1994 Dec; 7(6):428-32. PubMed ID: 7761351 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional background effects on a tumor driver gene in different pigment cell types of medaka. Abdulsahib S; Boswell W; Boswell M; Savage M; Schartl M; Lu Y J Exp Zool B Mol Dev Evol; 2024 May; 342(3):252-259. PubMed ID: 37877158 [TBL] [Abstract][Full Text] [Related]
8. Genetic, biochemical and evolutionary facets of Xmrk-induced melanoma formation in the fish Xiphophorus. Meierjohann S; Schartl M; Volff JN Comp Biochem Physiol C Toxicol Pharmacol; 2004 Jul; 138(3):281-9. PubMed ID: 15533786 [TBL] [Abstract][Full Text] [Related]
9. Differences in transcription and promoters of Xmrk-1 and Xmrk-2 genes suggest a role for Xmrk-2 in pigment pattern development in the platyfish, Xiphophorus maculatus. Woolcock BW; Schmidt BM; Kallman KD; Vielkind JR Cell Growth Differ; 1994 Jun; 5(6):575-83. PubMed ID: 7522032 [TBL] [Abstract][Full Text] [Related]
10. The Xmrk oncogene can escape nonfunctionalization in a highly unstable subtelomeric region of the genome of the fish Xiphophorus. Volff JN; Körting C; Froschauer A; Zhou Q; Wilde B; Schultheis C; Selz Y; Sweeney K; Duschl J; Wichert K; Altschmied J; Schartl M Genomics; 2003 Oct; 82(4):470-9. PubMed ID: 13679027 [TBL] [Abstract][Full Text] [Related]
11. Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Schartl M; Hornung U; Gutbrod H; Volff JN; Wittbrodt J Genetics; 1999 Nov; 153(3):1385-94. PubMed ID: 10545466 [TBL] [Abstract][Full Text] [Related]
12. Activation of the Xmrk proto-oncogene of Xiphophorus by overexpression and mutational alterations. Dimitrijevic N; Winkler C; Wellbrock C; Gómez A; Duschl J; Altschmied J; Schartl M Oncogene; 1998 Apr; 16(13):1681-90. PubMed ID: 9582016 [TBL] [Abstract][Full Text] [Related]
13. Signal transduction by the oncogenic receptor tyrosine kinase Xmrk in melanoma formation of Xiphophorus. Wellbrock C; Gómez A; Schartl M Pigment Cell Res; 1997; 10(1-2):34-40. PubMed ID: 9170160 [TBL] [Abstract][Full Text] [Related]
14. Evolution of signal transduction by gene and genome duplication in fish. Volff JN; Schartl M J Struct Funct Genomics; 2003; 3(1-4):139-50. PubMed ID: 12836693 [TBL] [Abstract][Full Text] [Related]
15. A sex-determining region on the Y chromosome controls the sex-reversal ratio in interspecific hybrids between Oryzias curvinotus females and Oryzias latipes males. Kato M; Takehana Y; Sakaizumi M; Hamaguchi S Heredity (Edinb); 2010 Feb; 104(2):191-5. PubMed ID: 19756038 [TBL] [Abstract][Full Text] [Related]
16. Intragenic sex-chromosomal crossovers of Xmrk oncogene alleles affect pigment pattern formation and the severity of melanoma in Xiphophorus. Gutbrod H; Schartl M Genetics; 1999 Feb; 151(2):773-83. PubMed ID: 9927468 [TBL] [Abstract][Full Text] [Related]
17. MITF-M plays an essential role in transcriptional activation and signal transduction in Xiphophorus melanoma. Delfgaauw J; Duschl J; Wellbrock C; Froschauer C; Schartl M; Altschmied J Gene; 2003 Nov; 320():117-26. PubMed ID: 14597395 [TBL] [Abstract][Full Text] [Related]
18. Tumor suppression in Xiphophorus by an accidentally acquired promoter. Adam D; Dimitrijevic N; Schartl M Science; 1993 Feb; 259(5096):816-9. PubMed ID: 8430335 [TBL] [Abstract][Full Text] [Related]
19. Apoptotic cell death in erythrocytes of p53-deficient medaka (Oryzias latipes) after γ-irradiation. Sayed Ael-D; Watanabe-Asaka T; Oda S; Mitani H Int J Radiat Biol; 2016 Oct; 92(10):572-6. PubMed ID: 27584718 [TBL] [Abstract][Full Text] [Related]
20. Molecular genetic analysis of the melanoma regulatory locus in Xiphophorus interspecies hybrids. Lu Y; Boswell M; Boswell W; Kneitz S; Hausmann M; Klotz B; Regneri J; Savage M; Amores A; Postlethwait J; Warren W; Schartl M; Walter R Mol Carcinog; 2017 Aug; 56(8):1935-1944. PubMed ID: 28345808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]