These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33231288)

  • 1. Plant-soil interactions limit lifetime fitness outside a native plant's geographic range margin.
    Benning JW; Moeller DA
    Ecology; 2021 Mar; 102(3):e03254. PubMed ID: 33231288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant's range.
    Benning JW; Moeller DA
    New Phytol; 2021 Mar; 229(5):2886-2900. PubMed ID: 33225448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maladaptation beyond a geographic range limit driven by antagonistic and mutualistic biotic interactions across an abiotic gradient.
    Benning JW; Moeller DA
    Evolution; 2019 Oct; 73(10):2044-2059. PubMed ID: 31435931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic Interactions Contribute to the Geographic Range Limit of an Annual Plant: Herbivory and Phenology Mediate Fitness beyond a Range Margin.
    Benning JW; Eckhart VM; Geber MA; Moeller DA
    Am Nat; 2019 Jun; 193(6):786-797. PubMed ID: 31094601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border.
    Geber MA; Eckhart VM
    Evolution; 2005 Mar; 59(3):521-31. PubMed ID: 15856695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.
    Moeller DA; Geber MA; Eckhart VM; Tiffin P
    Ecology; 2012 May; 93(5):1036-48. PubMed ID: 22764490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycorrhizal interactions do not influence plant-herbivore interactions in populations of
    Bolin LG; Benning JW; Moeller DA
    Ecol Evol; 2018 Nov; 8(22):10743-10753. PubMed ID: 30519403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental studies of adaptation in Clarkia xantiana. I. Sources of trait variation across a subspecies border.
    Eckhart VM; Geber MA; McGuire CM
    Evolution; 2004 Jan; 58(1):59-70. PubMed ID: 15058719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographic variation in reproductive assurance of Clarkia pulchella.
    Bontrager M; Muir CD; Angert AL
    Oecologia; 2019 May; 190(1):59-67. PubMed ID: 30953167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollinator community structure and sources of spatial variation in plant--pollinator interactions in Clarkia xantiana ssp. xantiana.
    Moeller DA
    Oecologia; 2005 Jan; 142(1):28-37. PubMed ID: 15338417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene flow improves fitness at a range edge under climate change.
    Bontrager M; Angert AL
    Evol Lett; 2019 Feb; 3(1):55-68. PubMed ID: 30788142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A greenhouse experiment partially supports inferences of ecogeographic isolation from niche models of Clarkia sister species.
    Goff KA; Martinez Del Rio C; Kay KM
    Am J Bot; 2021 Oct; 108(10):2002-2014. PubMed ID: 34661904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.
    Moeller DA; Geber MA
    Evolution; 2005 Apr; 59(4):786-99. PubMed ID: 15926689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.
    Anderson JT; Eckhart VM; Geber MA
    Evolution; 2015 Sep; 69(9):2249-61. PubMed ID: 26257193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.
    Eckhart VM; Geber MA; Morris WF; Fabio ES; Tiffin P; Moeller DA
    Am Nat; 2011 Oct; 178 Suppl 1():S26-43. PubMed ID: 21956090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of range-wide variation in climate and isolation on floral traits and reproductive output of Clarkia pulchella.
    Bontrager M; Angert AL
    Am J Bot; 2016 Jan; 103(1):10-21. PubMed ID: 26362193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological correlates of fitness across the northern geographic range limit of a Pacific Coast dune plant.
    Samis KE; Eckert CG
    Ecology; 2009 Nov; 90(11):3051-61. PubMed ID: 19967861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population genetics and the evolution of geographic range limits in an annual plant.
    Moeller DA; Geber MA; Tiffin P
    Am Nat; 2011 Oct; 178 Suppl 1():S44-57. PubMed ID: 21956091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination.
    Moeller DA
    Ecology; 2006 Jun; 87(6):1510-22. PubMed ID: 16869427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations.
    Schneider HE; Mazer SJ
    Am J Bot; 2016 Jan; 103(1):140-52. PubMed ID: 26744480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.