These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33231316)
1. Effect of temperature and insect herbivory on the regulation of glucosinolate-myrosinase system in Lepidium latifolium. Bhat R; Faiz S; Ali V; Khajuria M; Mukherjee D; Vyas D Physiol Plant; 2021 May; 172(1):53-63. PubMed ID: 33231316 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L. Kaur T; Bhat R; Khajuria M; Vyas R; Kumari A; Nadda G; Vishwakarma R; Vyas D Plant Sci; 2016 Sep; 250():1-9. PubMed ID: 27457978 [TBL] [Abstract][Full Text] [Related]
3. The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae. Müller C; Schulz M; Pagnotta E; Ugolini L; Yang T; Matthes A; Lazzeri L; Agerbirk N J Chem Ecol; 2018 Dec; 44(12):1190-1205. PubMed ID: 30218254 [TBL] [Abstract][Full Text] [Related]
4. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
5. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Shakour ZT; Shehab NG; Gomaa AS; Wessjohann LA; Farag MA Biotechnol Adv; 2022; 54():107784. PubMed ID: 34102260 [TBL] [Abstract][Full Text] [Related]
6. Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica Species. Almuziny M; Decker C; Wang D; Gerard P; Tharayil N J Chem Ecol; 2017 Feb; 43(2):129-142. PubMed ID: 28050732 [TBL] [Abstract][Full Text] [Related]
7. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein. Burow M; Bergner A; Gershenzon J; Wittstock U Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450 [TBL] [Abstract][Full Text] [Related]
8. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213 [TBL] [Abstract][Full Text] [Related]
9. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
10. The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Polozsányi Z; Galádová H; Kaliňák M; Jopčík M; Kaliňáková B; Breier A; Šimkovič M Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611524 [No Abstract] [Full Text] [Related]
11. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432 [TBL] [Abstract][Full Text] [Related]
12. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Mocniak LE; Elkin K; Bollinger JM Biochemistry; 2020 Jul; 59(26):2432-2441. PubMed ID: 32516526 [TBL] [Abstract][Full Text] [Related]
13. 'Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (Brassica napus) but affect host plant preferences. Borgen BH; Ahuja I; Thangstad OP; Honne BI; Rohloff J; Rossiter JT; Bones AM Plant Biol (Stuttg); 2012 Nov; 14(6):894-904. PubMed ID: 22672561 [TBL] [Abstract][Full Text] [Related]
14. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases. Sporer T; Körnig J; Wielsch N; Gebauer-Jung S; Reichelt M; Hupfer Y; Beran F Front Plant Sci; 2021; 12():645030. PubMed ID: 34093609 [TBL] [Abstract][Full Text] [Related]
15. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
16. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Rouzaud G; Rabot S; Ratcliffe B; Duncan AJ Br J Nutr; 2003 Aug; 90(2):395-404. PubMed ID: 12908900 [TBL] [Abstract][Full Text] [Related]
17. Purification and Characterization of a Novel Redox-Regulated Isoform of Myrosinase (β-Thioglucoside Glucohydrolase) from Lepidium latifolium L. Bhat R; Kaur T; Khajuria M; Vyas R; Vyas D J Agric Food Chem; 2015 Dec; 63(47):10218-26. PubMed ID: 26527478 [TBL] [Abstract][Full Text] [Related]
19. Controlling the quality of maca (Lepidium meyenii) dietary supplements: Development of compendial procedures for the determination of intact glucosinolates in maca root powder products. Xu Q; Monagas MJ; Kassymbek ZK; Belsky JL J Pharm Biomed Anal; 2021 May; 199():114063. PubMed ID: 33862504 [TBL] [Abstract][Full Text] [Related]
20. Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts. Xie C; Li W; Gao R; Yan L; Wang P; Gu Z; Yang R Food Chem; 2022 Jul; 382():132316. PubMed ID: 35152015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]