These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 33231890)
61. Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: application to whole-brain imaging. Park J; Mugler JP; Horger W; Kiefer B Magn Reson Med; 2007 Nov; 58(5):982-92. PubMed ID: 17969106 [TBL] [Abstract][Full Text] [Related]
62. Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T. Zwanenburg JJ; Versluis MJ; Luijten PR; Petridou N Neuroimage; 2011 Jun; 56(4):1902-7. PubMed ID: 21440070 [TBL] [Abstract][Full Text] [Related]
63. Sodium magnetic resonance imaging using ultra-short echo time sequences with anisotropic resolution and uniform k-space sampling. Konstandin S; Krämer P; Günther M; Schad LR Magn Reson Imaging; 2015 Apr; 33(3):319-27. PubMed ID: 25527394 [TBL] [Abstract][Full Text] [Related]
64. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. Karampinos DC; Banerjee S; King KF; Link TM; Majumdar S NMR Biomed; 2012 May; 25(5):766-78. PubMed ID: 22081519 [TBL] [Abstract][Full Text] [Related]
65. High spatio-temporal resolution in functional MRI with 3D echo planar imaging using cylindrical excitation and a CAIPIRINHA undersampling pattern. van der Zwaag W; Reynaud O; Narsude M; Gallichan D; Marques JP Magn Reson Med; 2018 May; 79(5):2589-2596. PubMed ID: 28905414 [TBL] [Abstract][Full Text] [Related]
66. Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Korteweg MA; Veldhuis WB; Visser F; Luijten PR; Mali WP; van Diest PJ; van den Bosch MA; Klomp DJ Invest Radiol; 2011 Jun; 46(6):370-6. PubMed ID: 21317792 [TBL] [Abstract][Full Text] [Related]
67. MR imaging of hemorrhagic brain lesions: a comparison of dual-echo gradient- and spin-echo and fast spin-echo techniques. Melhem ER; Patel RT; Whitehead RE; Bhatia RG; Rockwell DT; Jara H AJR Am J Roentgenol; 1998 Sep; 171(3):797-802. PubMed ID: 9725319 [TBL] [Abstract][Full Text] [Related]
68. GRASE (gradient- and spin-echo) MR of the brain. Rockwell DT; Melhem ER; Bhatia RG AJNR Am J Neuroradiol; 1997; 18(10):1923-8. PubMed ID: 9403455 [TBL] [Abstract][Full Text] [Related]
71. Whole-brain three-dimensional T2-weighted BOLD functional magnetic resonance imaging at 7 Tesla. Hua J; Qin Q; van Zijl PC; Pekar JJ; Jones CK Magn Reson Med; 2014 Dec; 72(6):1530-40. PubMed ID: 24338901 [TBL] [Abstract][Full Text] [Related]
72. Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Vidorreta M; Wang Z; Rodríguez I; Pastor MA; Detre JA; Fernández-Seara MA Neuroimage; 2013 Feb; 66():662-71. PubMed ID: 23142069 [TBL] [Abstract][Full Text] [Related]
73. Optimization of white-matter-nulled magnetization prepared rapid gradient echo (MP-RAGE) imaging. Saranathan M; Tourdias T; Bayram E; Ghanouni P; Rutt BK Magn Reson Med; 2015 May; 73(5):1786-94. PubMed ID: 24889754 [TBL] [Abstract][Full Text] [Related]
74. Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography. Kilroy E; Apostolova L; Liu C; Yan L; Ringman J; Wang DJ J Magn Reson Imaging; 2014 Apr; 39(4):931-9. PubMed ID: 24038544 [TBL] [Abstract][Full Text] [Related]
75. Hybrid radial-cones trajectory for accelerated MRI. Johnson KM Magn Reson Med; 2017 Mar; 77(3):1068-1081. PubMed ID: 27017991 [TBL] [Abstract][Full Text] [Related]
76. GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. Feinberg DA; Oshio K Radiology; 1991 Nov; 181(2):597-602. PubMed ID: 1924811 [TBL] [Abstract][Full Text] [Related]
77. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI. Stirnberg R; Huijbers W; Brenner D; Poser BA; Breteler M; Stöcker T Neuroimage; 2017 Dec; 163():81-92. PubMed ID: 28923276 [TBL] [Abstract][Full Text] [Related]
78. Snapshot-CEST: Optimizing spiral-centric-reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T. Zaiss M; Ehses P; Scheffler K NMR Biomed; 2018 Apr; 31(4):e3879. PubMed ID: 29372571 [TBL] [Abstract][Full Text] [Related]
79. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123 [TBL] [Abstract][Full Text] [Related]
80. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Yoo PE; John SE; Farquharson S; Cleary JO; Wong YT; Ng A; Mulcahy CB; Grayden DB; Ordidge RJ; Opie NL; O'Brien TJ; Oxley TJ; Moffat BA Neuroimage; 2018 Jan; 164():214-229. PubMed ID: 28286317 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]