These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33232118)

  • 1. Challenges and Prospects of Bio-Inspired and Multifunctional Transparent Substrates and Barrier Layers for Optoelectronics.
    Haghanifar S; Galante AJ; Leu PW
    ACS Nano; 2020 Dec; 14(12):16241-16265. PubMed ID: 33232118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.
    Guo X; Liu X; Lin F; Li H; Fan Y; Zhang N
    Sci Rep; 2015 May; 5():10569. PubMed ID: 26014889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices.
    Qiao W; Huang W; Liu Y; Li X; Chen LS; Tang JX
    Adv Mater; 2016 Dec; 28(47):10353-10380. PubMed ID: 27976840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired networks for optoelectronic applications.
    Han B; Huang Y; Li R; Peng Q; Luo J; Pei K; Herczynski A; Kempa K; Ren Z; Gao J
    Nat Commun; 2014 Nov; 5():5674. PubMed ID: 25430671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxide Heteroepitaxy for Flexible Optoelectronics.
    Bitla Y; Chen C; Lee HC; Do TH; Ma CH; Qui LV; Huang CW; Wu WW; Chang L; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32401-32407. PubMed ID: 27933841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices.
    Du J; Pei S; Ma L; Cheng HM
    Adv Mater; 2014 Apr; 26(13):1958-91. PubMed ID: 24591083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications.
    Qiu T; Akinoglu EM; Luo B; Konarova M; Yun JH; Gentle IR; Wang L
    Adv Mater; 2022 May; 34(19):e2103842. PubMed ID: 35119141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates.
    Haghanifar S; Rodriguez De Vecchis RT; Kim KJ; Wuenschell J; Sharma SP; Lu P; Ohodnicki P; Leu PW
    Nanotechnology; 2018 Oct; 29(42):42LT01. PubMed ID: 30052201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications.
    Shin S; Seo J; Han H; Kang S; Kim H; Lee T
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits.
    Rodrigo JA
    Sci Rep; 2017 Apr; 7():46506. PubMed ID: 28406226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intrinsically Micro-/Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications.
    Hwang Y; Sadhu A; Shin S; Leow SW; Zhao Z; Deng J; Jackman JA; Kim M; Wong LH; Cho NJ
    Adv Mater; 2021 Aug; 33(32):e2100566. PubMed ID: 34189777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near 90% Transparent ITO-Based Flexible Electrode with Double-Sided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices.
    Zhang J; Li X; Zhong M; Zhang Z; Jia M; Li J; Gao X; Chen L; Li Q; Zhang W; Xu D
    Small; 2022 May; 18(19):e2201716. PubMed ID: 35419940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications.
    Wu WQ; Xu YF; Chen HY; Kuang DB; Su CY
    Acc Chem Res; 2019 Mar; 52(3):633-644. PubMed ID: 30668116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.
    Zhu H; Fang Z; Wang Z; Dai J; Yao Y; Shen F; Preston C; Wu W; Peng P; Jang N; Yu Q; Yu Z; Hu L
    ACS Nano; 2016 Jan; 10(1):1369-77. PubMed ID: 26673796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible organic optoelectronic devices on paper.
    Pan T; Liu S; Zhang L; Xie W
    iScience; 2022 Feb; 25(2):103782. PubMed ID: 35146395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels.
    Yu H; Tian Y; Dirican M; Fang D; Yan C; Xie J; Jia D; Liu Y; Li C; Cui M; Liu H; Chen G; Zhang X; Tao J
    Carbohydr Polym; 2021 Dec; 273():118539. PubMed ID: 34560951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printable Transparent Conductive Films for Flexible Electronics.
    Li D; Lai WY; Zhang YZ; Huang W
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29319214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Large-Area Uniform Nanometer-Thick Functional Layers and Their Stacks for Flexible Quantum Dot Light-Emitting Diodes.
    Zhang W; Du J; Wei Q; Zhang D; Pei S; Tong B; Liu Z; Liang Y; Cheng HM; Ren W
    Small Methods; 2022 Feb; 6(2):e2101030. PubMed ID: 35174984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-Generation Multifunctional Electrochromic Devices.
    Cai G; Wang J; Lee PS
    Acc Chem Res; 2016 Aug; 49(8):1469-76. PubMed ID: 27404116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.