These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33232239)

  • 1. Robot-Aided Training of Propulsion During Walking: Effects of Torque Pulses Applied to the Hip and Knee Joints During Stance.
    McGrath R; Bodt B; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2923-2932. PubMed ID: 33232239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints.
    McGrath RL; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between magnitude of applied torque in pre-swing phase and gait change for prevention of trip in elderly people.
    Miyake T; Tsukune M; Kobayashi Y; Sugano S; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6154-6157. PubMed ID: 28269657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.
    Miyake T; Kobayashi Y; Fujie MG; Sugano S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
    Buford JA; Zernicke RF; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):745-55. PubMed ID: 2230921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obesity is not associated with increased knee joint torque and power during level walking.
    DeVita P; Hortobágyi T
    J Biomech; 2003 Sep; 36(9):1355-62. PubMed ID: 12893044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between hip and knee strength and knee valgus during a single leg squat.
    Claiborne TL; Armstrong CW; Gandhi V; Pincivero DM
    J Appl Biomech; 2006 Feb; 22(1):41-50. PubMed ID: 16760566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hip Joint Torsional Loading Before and After Cam Femoroacetabular Impingement Surgery.
    Ng KCG; El Daou H; Bankes MJK; Rodriguez Y Baena F; Jeffers JRT
    Am J Sports Med; 2019 Feb; 47(2):420-430. PubMed ID: 30596529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive control for backward quadrupedal walking. IV. Hindlimb kinetics during stance and swing.
    Perell KL; Gregor RJ; Buford JA; Smith JL
    J Neurophysiol; 1993 Dec; 70(6):2226-40. PubMed ID: 8120579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the relationship between hip joint flexion/extension and torques in the mark III space suit using a computational dynamics model.
    McKeen P; Cullinane C; Rhodes R; Stirling L
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):831-843. PubMed ID: 33337914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator.
    Bessler-Etten J; Schaake L; Prange-Lasonder GB; Buurke JH
    J Neuroeng Rehabil; 2022 Jan; 19(1):13. PubMed ID: 35090501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.