These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33232432)
1. Theory for the Casimir effect and the partitioning of active matter. Kjeldbjerg CM; Brady JF Soft Matter; 2021 Jan; 17(3):523-530. PubMed ID: 33232432 [TBL] [Abstract][Full Text] [Related]
2. Partitioning of active particles into porous media. Kjeldbjerg CM; Brady JF Soft Matter; 2022 Apr; 18(14):2757-2766. PubMed ID: 35315471 [TBL] [Abstract][Full Text] [Related]
3. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Das S; Gompper G; Winkler RG Sci Rep; 2019 Apr; 9(1):6608. PubMed ID: 31036857 [TBL] [Abstract][Full Text] [Related]
4. Waves in active matter: The transition from ballistic to diffusive behavior. Dulaney AR; Brady JF Phys Rev E; 2020 May; 101(5-1):052609. PubMed ID: 32575299 [TBL] [Abstract][Full Text] [Related]
5. Pressure and diffusion of active matter with inertia. Sandoval M Phys Rev E; 2020 Jan; 101(1-1):012606. PubMed ID: 32069641 [TBL] [Abstract][Full Text] [Related]
7. The curved kinetic boundary layer of active matter. Yan W; Brady JF Soft Matter; 2018 Jan; 14(2):279-290. PubMed ID: 29242866 [TBL] [Abstract][Full Text] [Related]
8. Phase behavior and surface tension of soft active Brownian particles. Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024 [TBL] [Abstract][Full Text] [Related]
9. Virial pressure in systems of spherical active Brownian particles. Winkler RG; Wysocki A; Gompper G Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908 [TBL] [Abstract][Full Text] [Related]
10. Macrotransport of active particles in periodic channels and fields: Rectification and dispersion. Peng Z J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404215 [TBL] [Abstract][Full Text] [Related]
11. Active Brownian particles and run-and-tumble particles separate inside a maze. Khatami M; Wolff K; Pohl O; Ejtehadi MR; Stark H Sci Rep; 2016 Nov; 6():37670. PubMed ID: 27876867 [TBL] [Abstract][Full Text] [Related]
12. Casimir effect in active matter systems. Ray D; Reichhardt C; Reichhardt CJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013019. PubMed ID: 25122381 [TBL] [Abstract][Full Text] [Related]
13. Active particles under confinement and effective force generation among surfaces. Caprini L; Marini Bettolo Marconi U Soft Matter; 2018 Nov; 14(44):9044-9054. PubMed ID: 30387799 [TBL] [Abstract][Full Text] [Related]
14. Fluctuation spectra and force generation in nonequilibrium systems. Lee AA; Vella D; Wettlaufer JS Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9255-9260. PubMed ID: 28811368 [TBL] [Abstract][Full Text] [Related]
15. Swim pressure on walls with curves and corners. Smallenburg F; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032304. PubMed ID: 26465470 [TBL] [Abstract][Full Text] [Related]
17. Ideal bulk pressure of active Brownian particles. Speck T; Jack RL Phys Rev E; 2016 Jun; 93(6):062605. PubMed ID: 27415318 [TBL] [Abstract][Full Text] [Related]
18. Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles. Epstein JM; Klymko K; Mandadapu KK J Chem Phys; 2019 Apr; 150(16):164111. PubMed ID: 31042887 [TBL] [Abstract][Full Text] [Related]
19. Beating of grafted chains induced by active Brownian particles. Yang QS; Fan QW; Shen ZL; Xia YQ; Tian WD; Chen K J Chem Phys; 2018 Jun; 148(21):214904. PubMed ID: 29884058 [TBL] [Abstract][Full Text] [Related]
20. Active Brownian particles moving in a random Lorentz gas. Zeitz M; Wolff K; Stark H Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]