BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33232598)

  • 21. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial engineering for the production of isobutanol: current status and future directions.
    Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A
    Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetic Control of Heterologous Metabolism in
    Raghavan AR; Salim K; Yadav VG
    ACS Synth Biol; 2020 Sep; 9(9):2291-2300. PubMed ID: 32786352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Saccharomyces cerevisiae expression plasmids.
    Drew D; Kim H
    Methods Mol Biol; 2012; 866():41-6. PubMed ID: 22454112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae.
    Peng B; Bandari NC; Lu Z; Howard CB; Scott C; Trau M; Dumsday G; Vickers CE
    Commun Biol; 2022 Feb; 5(1):135. PubMed ID: 35173283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-based control of metabolic flux through assembly of synthetic organelles.
    Zhao EM; Suek N; Wilson MZ; Dine E; Pannucci NL; Gitai Z; Avalos JL; Toettcher JE
    Nat Chem Biol; 2019 Jun; 15(6):589-597. PubMed ID: 31086330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast.
    Bezold F; Scheffer J; Wendering P; Razaghi-Moghadam Z; Trauth J; Pook B; Nußhär H; Hasenjäger S; Nikoloski Z; Essen LO; Taxis C
    Metab Eng; 2023 Sep; 79():97-107. PubMed ID: 37422133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of expression between adjacent genes within heterologous modules in yeast.
    Lee TJ; Parikh RY; Weitz JS; Kim HD
    G3 (Bethesda); 2014 Jan; 4(1):109-16. PubMed ID: 24281423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
    Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R
    Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulatable MAL32 promoter in Saccharomyces cerevisiae: characteristics and tools to facilitate its use.
    Meurer M; Chevyreva V; Cerulus B; Knop M
    Yeast; 2017 Jan; 34(1):39-49. PubMed ID: 27714848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.