These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33232598)

  • 41. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.
    Curran KA; Karim AS; Gupta A; Alper HS
    Metab Eng; 2013 Sep; 19():88-97. PubMed ID: 23856240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae.
    Vickers CE; Bydder SF; Zhou Y; Nielsen LK
    Microb Cell Fact; 2013 Oct; 12():96. PubMed ID: 24161108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.
    Lee KM; DaSilva NA
    Yeast; 2005 Apr; 22(6):431-40. PubMed ID: 15849781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Standardized Set of MoClo-Compatible Inducible Promoter Systems for Tunable Gene Expression in Yeast.
    O'Laughlin R; Tran Q; Lezia A; Ngamkanjanarat W; Emmanuele P; Hao N; Hasty J
    ACS Synth Biol; 2024 Jan; 13(1):85-102. PubMed ID: 38079574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.
    McIsaac RS; Gibney PA; Chandran SS; Benjamin KR; Botstein D
    Nucleic Acids Res; 2014 Apr; 42(6):e48. PubMed ID: 24445804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.
    Guinn MT; Coraci D; Guinn L; Balázsi G
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.
    Deng J; Wu Y; Zheng Z; Chen N; Luo X; Tang H; Keasling JD
    Microb Cell Fact; 2021 Oct; 20(1):202. PubMed ID: 34663323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges.
    Azambuja SPH; Goldbeck R
    World J Microbiol Biotechnol; 2020 Mar; 36(3):48. PubMed ID: 32152786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular tools for pathway engineering in Saccharomyces cerevisiae.
    Besada-Lombana PB; McTaggart TL; Da Silva NA
    Curr Opin Biotechnol; 2018 Oct; 53():39-49. PubMed ID: 29274630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 57. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales.
    Pouzet S; Cruz-Ramón J; Le Bec M; Cordier C; Banderas A; Barral S; Castaño-Cerezo S; Lautier T; Truan G; Hersen P
    Front Bioeng Biotechnol; 2023; 11():1085268. PubMed ID: 36814715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.
    Promdonkoy P; Mhuantong W; Champreda V; Tanapongpipat S; Runguphan W
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):497-510. PubMed ID: 32430798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
    Yuan J; Chen X; Mishra P; Ching CB
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):465-474. PubMed ID: 27847988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.