These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33232599)

  • 1. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies.
    Lossouarn A; Renard PY; Sabot C
    Bioconjug Chem; 2021 Jan; 32(1):63-72. PubMed ID: 33232599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity.
    Bosc D; Camberlein V; Gealageas R; Castillo-Aguilera O; Deprez B; Deprez-Poulain R
    J Med Chem; 2020 Apr; 63(8):3817-3833. PubMed ID: 31820982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis.
    Unver MY; Gierse RM; Ritchie H; Hirsch AKH
    J Med Chem; 2018 Nov; 61(21):9395-9409. PubMed ID: 29873484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the kinetic target-guided synthesis of protein ligands.
    Oueis E; Sabot C; Renard PY
    Chem Commun (Camb); 2015 Aug; 51(61):12158-69. PubMed ID: 26144842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Induced Unlocking Reactivity of Fragments for Fast Target-Guided Synthesis of Carbonic Anhydrase Inhibitors.
    Puteaux C; Toubia I; Truong L; Hubert-Roux M; Bailly L; Oulyadi H; Renard PY; Sabot C
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407888. PubMed ID: 39003572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach.
    Nacheva K; Kulkarni SS; Kassu M; Flanigan D; Monastyrskyi A; Iyamu ID; Doi K; Barber M; Namelikonda N; Tipton JD; Parvatkar P; Wang HG; Manetsch R
    J Med Chem; 2023 Apr; 66(7):5196-5207. PubMed ID: 37000900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey.
    Bosc D; Jakhlal J; Deprez B; Deprez-Poulain R
    Future Med Chem; 2016; 8(4):381-404. PubMed ID: 26877247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of potent inhibitors by fragment-linking strategies.
    Bedwell EV; McCarthy WJ; Coyne AG; Abell C
    Chem Biol Drug Des; 2022 Oct; 100(4):469-486. PubMed ID: 35854428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalloenzyme-Mediated Thiol-Yne Addition Towards Photoisomerizable Fluorescent Dyes.
    Lossouarn A; Puteaux C; Bailly L; Tognetti V; Joubert L; Renard PY; Sabot C
    Chemistry; 2022 Nov; 28(62):e202202180. PubMed ID: 35861353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Bioorthogonal Chemistry in Tumor-Targeted Drug Discovery.
    Liu G; Wold EA; Zhou J
    Curr Top Med Chem; 2019; 19(11):892-897. PubMed ID: 31074366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophilic Natural Products as Drug Discovery Tools.
    Gehrtz P; London N
    Trends Pharmacol Sci; 2021 Jun; 42(6):434-447. PubMed ID: 33902949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.
    Honda T
    Chem Pharm Bull (Tokyo); 2012; 60(6):687-705. PubMed ID: 22689419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seeing small molecules in action with bioorthogonal chemistry.
    Raghavan AS; Hang HC
    Drug Discov Today; 2009 Feb; 14(3-4):178-84. PubMed ID: 18973827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing New Bioorthogonal Reagents and Reactions.
    Row RD; Prescher JA
    Acc Chem Res; 2018 May; 51(5):1073-1081. PubMed ID: 29727171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets.
    Mondal M; Hirsch AK
    Chem Soc Rev; 2015 Apr; 44(8):2455-88. PubMed ID: 25706945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field.
    Wang L; Wu Y; Deng Y; Kim B; Pierce L; Krilov G; Lupyan D; Robinson S; Dahlgren MK; Greenwood J; Romero DL; Masse C; Knight JL; Steinbrecher T; Beuming T; Damm W; Harder E; Sherman W; Brewer M; Wester R; Murcko M; Frye L; Farid R; Lin T; Mobley DL; Jorgensen WL; Berne BJ; Friesner RA; Abel R
    J Am Chem Soc; 2015 Feb; 137(7):2695-703. PubMed ID: 25625324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules.
    Best MD
    Biochemistry; 2009 Jul; 48(28):6571-84. PubMed ID: 19485420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery.
    Ramsay RR
    Curr Top Med Chem; 2012; 12(20):2189-209. PubMed ID: 23231396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular fields in ligand discovery.
    Gane PJ; Chan AW
    Methods Mol Biol; 2013; 1008():479-99. PubMed ID: 23729264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.