These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33232655)

  • 41. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity.
    Koesters AG; Rich MM; Engisch KL
    Neuroscientist; 2024 Feb; 30(1):49-70. PubMed ID: 35904350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synaptic plasticity: Balancing firing rates in vivo.
    Whalley K
    Nat Rev Neurosci; 2013 Dec; 14(12):820-1. PubMed ID: 24201182
    [No Abstract]   [Full Text] [Related]  

  • 43. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function.
    Turrigiano G
    Cold Spring Harb Perspect Biol; 2012 Jan; 4(1):a005736. PubMed ID: 22086977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex.
    Etherington SJ; Williams SR
    J Neurosci; 2011 Jun; 31(26):9526-37. PubMed ID: 21715617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons.
    Ishikawa M; Mu P; Moyer JT; Wolf JA; Quock RM; Davies NM; Hu XT; Schlüter OM; Dong Y
    J Neurosci; 2009 May; 29(18):5820-31. PubMed ID: 19420249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMDA-receptor-dependent synaptic plasticity in the visual cortex.
    Bear MF
    Prog Brain Res; 1996; 108():205-18. PubMed ID: 8979803
    [No Abstract]   [Full Text] [Related]  

  • 49. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Associative Hebbian synaptic plasticity in primate visual cortex.
    Huang S; Rozas C; Treviño M; Contreras J; Yang S; Song L; Yoshioka T; Lee HK; Kirkwood A
    J Neurosci; 2014 May; 34(22):7575-9. PubMed ID: 24872561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex.
    Carmignoto G; Vicini S
    Science; 1992 Nov; 258(5084):1007-11. PubMed ID: 1279803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Erasing synapses in sleep: is it time to be SHY?
    Frank MG
    Neural Plast; 2012; 2012():264378. PubMed ID: 22530156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A role of NMDA receptors and Ca2+ influx in synaptic plasticity in the developing visual cortex.
    Tsumoto T; Kimura F; Nishigori A
    Adv Exp Med Biol; 1990; 268():173-80. PubMed ID: 1981641
    [No Abstract]   [Full Text] [Related]  

  • 55. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons.
    Leslie KR; Nelson SB; Turrigiano GG
    J Neurosci; 2001 Oct; 21(19):RC170. PubMed ID: 11567081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades.
    Wang G; Gilbert J; Man HY
    Neural Plast; 2012; 2012():825364. PubMed ID: 22655210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo.
    Ma Z; Turrigiano GG; Wessel R; Hengen KB
    Neuron; 2019 Nov; 104(4):655-664.e4. PubMed ID: 31601510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-cell optogenetic excitation drives homeostatic synaptic depression.
    Goold CP; Nicoll RA
    Neuron; 2010 Nov; 68(3):512-28. PubMed ID: 21040851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synaptic tagging: homeostatic plasticity goes Hebbian.
    Colameo D; Schratt G
    EMBO J; 2022 Oct; 41(20):e112383. PubMed ID: 36097740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.