BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 33232695)

  • 1. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation.
    Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A
    Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment.
    Lefrançois C; Messier J
    Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement kinematic and postural control differences when performing a visuomotor skill in real and virtual environments.
    Brock K; Vine SJ; Ross JM; Trevarthen M; Harris DJ
    Exp Brain Res; 2023 Jul; 241(7):1797-1810. PubMed ID: 37222777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up transfer of sensory-motor plasticity to recovery of spatial cognition: visuomotor adaptation and spatial neglect.
    Rode G; Pisella L; Rossetti Y; Farnè A; Boisson D
    Prog Brain Res; 2003; 142():273-87. PubMed ID: 12693267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immersive virtual reality system for ecological assessment of peripersonal and extrapersonal unilateral spatial neglect.
    Perez-Marcos D; Ronchi R; Giroux A; Brenet F; Serino A; Tadi T; Blanke O
    J Neuroeng Rehabil; 2023 Mar; 20(1):33. PubMed ID: 36934277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis.
    Viau A; Feldman AG; McFadyen BJ; Levin MF
    J Neuroeng Rehabil; 2004 Dec; 1(1):11. PubMed ID: 15679937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality applications for the remapping of space in neglect patients.
    Ansuini C; Pierno AC; Lusher D; Castiello U
    Restor Neurol Neurosci; 2006; 24(4-6):431-41. PubMed ID: 17119316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and Rehabilitation of Unilateral Spatial Neglect in Immersive Virtual Reality: A Validation Study in Healthy Subjects.
    Faity G; Sidahmed Y; Laffont I; Froger J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of aperture closure during reach-to-grasp movements in immersive haptic-free virtual reality.
    Mangalam M; Yarossi M; Furmanek MP; Tunik E
    Exp Brain Res; 2021 May; 239(5):1651-1665. PubMed ID: 33774688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space.
    Berberovic N; Mattingley JB
    Neuropsychologia; 2003; 41(4):493-503. PubMed ID: 12559165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving left hemispatial neglect using virtual reality.
    Castiello U; Lusher D; Burton C; Glover S; Disler P
    Neurology; 2004 Jun; 62(11):1958-62. PubMed ID: 15184596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor misalignment induced through immersive virtual reality to improve spatial neglect: a case-series study.
    Chen P; Boukrina O; Krch D
    Neurocase; 2022 Aug; 28(4):393-402. PubMed ID: 36219753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposing force fields induce direction-specific sensorimotor adaptation but a non-specific perceptual shift consistent with a contraction of peripersonal space representation.
    Leclere NX; Sarlegna FR; Coello Y; Bourdin C
    Exp Brain Res; 2021 Jan; 239(1):31-46. PubMed ID: 33097985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility and relevance of an immersive virtual reality cancellation task assessing far space in unilateral spatial neglect.
    Guilbert A; Bara TG; Bouchara T; Gaffard M; Bourlon C
    J Neuropsychol; 2024 Jun; 18(2):300-311. PubMed ID: 37942647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an immersive virtual reality system for training near and far space neglect in individuals with stroke: a pilot study.
    Yasuda K; Muroi D; Ohira M; Iwata H
    Top Stroke Rehabil; 2017 Oct; 24(7):533-538. PubMed ID: 28701101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention.
    Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visuomotor adaptation in head-mounted virtual reality versus conventional training.
    Anglin JM; Sugiyama T; Liew SL
    Sci Rep; 2017 Apr; 7():45469. PubMed ID: 28374808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.