BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33232755)

  • 1. Effect of implant formation on drug release kinetics of in situ forming implants.
    Suh MS; Kastellorizios M; Tipnis N; Zou Y; Wang Y; Choi S; Burgess DJ
    Int J Pharm; 2021 Jan; 592():120105. PubMed ID: 33232755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel adapter method for in vitro release testing of in situ forming implants.
    Wang X; Bao Q; Suh MS; Kastellorizios M; Wang R; Burgess DJ
    Int J Pharm; 2022 Jun; 621():121777. PubMed ID: 35489601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging.
    Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA
    Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ forming PLGA implants: Towards less toxic solvents.
    Ramos F; Willart JF; Neut C; Agossa K; Siepmann J; Siepmann F
    Int J Pharm; 2024 May; 657():124121. PubMed ID: 38621617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial Leuprolide Acetate Release from Poly(d,l-lactide-
    Li Z; Mu H; Larsen SW; Jensen H; Østergaard J
    Mol Pharm; 2020 Dec; 17(12):4522-4532. PubMed ID: 33164519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asenapine maleate in situ forming biodegradable implant: an approach to enhance bioavailability.
    Avachat AM; Kapure SS
    Int J Pharm; 2014 Dec; 477(1-2):64-72. PubMed ID: 25305379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(β-amino ester) and hydroxyapatite microparticles.
    Fisher PD; Palomino P; Milbrandt TA; Hilt JZ; Puleo DA
    J Biomater Sci Polym Ed; 2014; 25(11):1174-93. PubMed ID: 24903524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of injection site on in situ implant formation and drug release in vivo.
    Patel RB; Solorio L; Wu H; Krupka T; Exner AA
    J Control Release; 2010 Nov; 147(3):350-8. PubMed ID: 20728486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure.
    Solorio L; Exner AA
    J Pharm Sci; 2015 Dec; 104(12):4322-4328. PubMed ID: 26506522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants.
    Li Z; Mu H; Weng Larsen S; Jensen H; Østergaard J
    Int J Pharm; 2021 Nov; 609():121183. PubMed ID: 34653562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards in vitro - In vivo correlation models for in situ forming drug implants.
    Wang X; Roy M; Wang R; Kwok O; Wang Y; Wang Y; Qin B; Burgess DJ
    J Control Release; 2024 Jun; ():. PubMed ID: 38936743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive characterization of in situ forming implants using diagnostic ultrasound.
    Solorio L; Babin BM; Patel RB; Mach J; Azar N; Exner AA
    J Control Release; 2010 Apr; 143(2):183-90. PubMed ID: 20060859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide.
    Sheshala R; Hong GC; Yee WP; Meka VS; Thakur RRS
    Drug Deliv Transl Res; 2019 Apr; 9(2):534-542. PubMed ID: 29484530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ forming PLGA implants for intraocular dexamethasone delivery.
    Bode C; Kranz H; Siepmann F; Siepmann J
    Int J Pharm; 2018 Sep; 548(1):337-348. PubMed ID: 29981408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release rate determination from in situ gel forming PLGA implant: a novel 'shape-controlled basket in tube' method.
    Zhang Q; Fassihi R
    J Pharm Pharmacol; 2020 Aug; 72(8):1038-1048. PubMed ID: 32342528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems.
    Dong WY; Körber M; López Esguerra V; Bodmeier R
    J Control Release; 2006 Oct; 115(2):158-67. PubMed ID: 16963145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug release mechanisms of high-drug-load, melt-extruded dexamethasone intravitreal implants.
    Costello MA; Liu J; Chen B; Wang Y; Qin B; Xu X; Li Q; Lynd NA; Zhang F
    Eur J Pharm Biopharm; 2023 Jun; 187():46-56. PubMed ID: 37037387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance.
    Do MP; Neut C; Metz H; Delcourt E; Mäder K; Siepmann J; Siepmann F
    Int J Pharm; 2015; 486(1-2):38-51. PubMed ID: 25791762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.