BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33232864)

  • 21. Early on-site detection of strawberry anthracnose using portable Raman spectroscopy.
    Kim S; Hong SH; Kim JH; Oh MK; Eom TJ; Park YH; Shin GH; Yim SY
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123150. PubMed ID: 37487289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides.
    Osorio LF; Pattison JA; Peres NA; Whitaker VM
    Phytopathology; 2014 Jan; 104(1):67-74. PubMed ID: 23981282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry.
    Grellet-Bournonville CF; Martinez-Zamora MG; Castagnaro AP; Díaz-Ricci JC
    Plant Physiol Biochem; 2012 May; 54():10-6. PubMed ID: 22366637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multilocus Phylogenetic Analyses of
    Oliveira MS; Wang NY; Peres NA
    Phytopathology; 2022 Apr; 112(4):898-906. PubMed ID: 34549972
    [No Abstract]   [Full Text] [Related]  

  • 25. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid.
    Zhang QY; Zhang LQ; Song LL; Duan K; Li N; Wang YX; Gao QH
    Hortic Res; 2016; 3():16007. PubMed ID: 27004126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Transcriptome Analysis Reveals the Effect of the DHN Melanin Biosynthesis Pathway on the Appressorium Turgor Pressure of the Poplar Anthracnose-Causing Fungus
    Qin X; Tian C; Meng F
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a nested PCR assay for detecting Colletotrichum siamense and Colletotrichum fructicola on symptomless strawberry plants.
    Chung PC; Wu HY; Chen YC; Hung TH; Chung CL
    PLoS One; 2022; 17(6):e0270687. PubMed ID: 35763511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution and Characteristics of Colletotrichum spp. Associated with Anthracnose of Strawberry in Hubei, China.
    Han YC; Zeng XG; Xiang FY; Ren L; Chen FY; Gu YC
    Plant Dis; 2016 May; 100(5):996-1006. PubMed ID: 30686149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oversummer Survival of Inoculum for Colletotrichum Crown Rot in Buried Strawberry Crown Tissue.
    Ureña-Padilla AR; Mitchell DJ; Legard DE
    Plant Dis; 2001 Jul; 85(7):750-754. PubMed ID: 30823201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides.
    Jiang L; Wu P; Yang L; Liu C; Guo P; Wang H; Wang S; Xu F; Zhuang Q; Tong X; Liu P; Luo L
    Genomics; 2021 Jul; 113(4):2702-2716. PubMed ID: 34111523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae.
    Fang X; Chen W; Xin Y; Zhang H; Yan C; Yu H; Liu H; Xiao W; Wang S; Zheng G; Liu H; Jin L; Ma H; Ruan S
    J Proteomics; 2012 Jul; 75(13):4074-90. PubMed ID: 22634039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L.
    Silva KJP; Brunings AM; Pereira JA; Peres NA; Folta KM; Mou Z
    BMC Plant Biol; 2017 Dec; 17(1):230. PubMed ID: 29191170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species.
    Aharoni A; Giri AP; Verstappen FW; Bertea CM; Sevenier R; Sun Z; Jongsma MA; Schwab W; Bouwmeester HJ
    Plant Cell; 2004 Nov; 16(11):3110-31. PubMed ID: 15522848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango.
    Tang L; Mo J; Guo T; Huang S; Li Q; Ning P; Hsiang T
    World J Microbiol Biotechnol; 2019 Dec; 36(1):4. PubMed ID: 31832786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual Transcriptome Analysis Reveals That
    Zhu Y; Duan L; Zhu C; Wang L; He Z; Yang M; Zhou E
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Phenolic Compounds on Growth of Colletotrichum spp. In Vitro.
    Roy S; Nuckles E; Archbold DD
    Curr Microbiol; 2018 May; 75(5):550-556. PubMed ID: 29247336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Transcriptome Analysis to Identify Candidate Genes for
    Chandra S; Oh Y; Han H; Salinas N; Anciro A; Whitaker VM; Chacon JG; Fernandez G; Lee S
    Front Genet; 2021; 12():730444. PubMed ID: 34504518
    [No Abstract]   [Full Text] [Related]  

  • 38. Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum.
    Baraldi E; Coller E; Zoli L; Cestaro A; Tosatto SC; Zambelli B
    Plant Mol Biol; 2015 Sep; 89(1-2):49-65. PubMed ID: 26245354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic and Metabolomic Analyses Provide Insights into the Formation of the Peach-like Aroma of
    Wang AH; Ma HY; Zhang BH; Mo CY; Li EH; Li F
    Genes (Basel); 2022 Jul; 13(7):. PubMed ID: 35886068
    [No Abstract]   [Full Text] [Related]  

  • 40. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.
    Pinweha N; Asvarak T; Viboonjun U; Narangajavana J
    J Plant Physiol; 2015 Feb; 174():26-35. PubMed ID: 25462963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.