These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33233065)

  • 21. Cold-set globular protein gels: interactions, structure and rheology as a function of protein concentration.
    Alting AC; Hamer RJ; de Kruif CG; Visschers RW
    J Agric Food Chem; 2003 May; 51(10):3150-6. PubMed ID: 12720407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels.
    Mao L; Roos YH; Miao S
    J Agric Food Chem; 2014 Nov; 62(47):11420-8. PubMed ID: 25364855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheological properties of protein-surfactant based gels.
    Roversi M; La Mesa C
    J Colloid Interface Sci; 2005 Apr; 284(2):470-6. PubMed ID: 15780284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural, gelation properties and microstructure of rice glutelin/sugar beet pectin composite gels: Effects of ionic strengths.
    Wang YR; Yang Q; Li-Sha YJ; Chen HQ
    Food Chem; 2021 Jun; 346():128956. PubMed ID: 33418414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The gelation of oil using ethyl cellulose.
    Davidovich-Pinhas M; Barbut S; Marangoni AG
    Carbohydr Polym; 2015 Mar; 117():869-878. PubMed ID: 25498711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xanthan enhances water binding and gel formation of transglutaminase-treated porcine myofibrillar proteins.
    Shang Y; Xiong YL
    J Food Sci; 2010 Apr; 75(3):E178-85. PubMed ID: 20492292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological and microstructural properties of cold-set emulsion gels fabricated from mixed proteins: Whey protein and lactoferrin.
    Yan C; Fu D; McClements DJ; Xu P; Zou L; Zhu Y; Cheng C; Liu W
    Food Res Int; 2019 May; 119():315-324. PubMed ID: 30884662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of transglutaminase crosslinking on the rheological characteristics of heated peanut flour dispersions.
    Gharst G; Clare DA; Davis JP; Sanders TH
    J Food Sci; 2007 Sep; 72(7):C369-75. PubMed ID: 17995634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.
    Owczarz M; Bolisetty S; Mezzenga R; Arosio P
    J Colloid Interface Sci; 2015 Jan; 437():244-251. PubMed ID: 25441357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and shelf stability of milk protein gels created by pressure-assisted enzymatic gelation.
    Wang L; Moraru CI
    J Dairy Sci; 2021 Apr; 104(4):3970-3979. PubMed ID: 33663841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
    Guyomarc'h F; Jemin M; Le Tilly V; Madec MN; Famelart MH
    J Agric Food Chem; 2009 Jul; 57(13):5910-7. PubMed ID: 19534462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Temperature and Ionic Strength of Dissolution Medium on the Gelation of Amorphous Lurasidone Hydrochloride.
    Heng W; Wei Y; Zhou S; Ma D; Gao Y; Zhang J; Qian S
    Pharm Res; 2019 Mar; 36(5):72. PubMed ID: 30915636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.
    Torres MD; Chenlo F; Moreira R
    Int J Biol Macromol; 2016 May; 86():418-24. PubMed ID: 26827757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the physicochemical properties of rabbit glycated myofibrillary protein with high solubility in low ionic strength medium.
    Li S; He Z; Li M; Li R; Lu J; Li H
    Int J Biol Macromol; 2020 Mar; 147():241-249. PubMed ID: 31926235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and rheology of cationic molecular hydrogels of quinuclidine grafted bile salts. Influence of the ionic strength and counter-ion type.
    Terech P; Dourdain S; Maitra U; Bhat S
    J Phys Chem B; 2009 Apr; 113(14):4619-30. PubMed ID: 19256482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New insight into agarose gel mechanical properties.
    Normand V; Lootens DL; Amici E; Plucknett KP; Aymard P
    Biomacromolecules; 2000; 1(4):730-8. PubMed ID: 11710204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel.
    Hashemnejad SM; Kundu S
    Langmuir; 2017 Aug; 33(31):7769-7779. PubMed ID: 28715639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gelation Kinetics-Structure Analysis of pH-triggered Low Molecular Weight Hydrogelators.
    Lakshminarayanan V; Chockalingam C; Mendes E; van Esch JH
    Chemphyschem; 2021 Nov; 22(21):2256-2261. PubMed ID: 34288310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.