BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33233076)

  • 1. Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept.
    Garre A; Zwietering MH; den Besten HMW
    Food Res Int; 2020 Nov; 137():109374. PubMed ID: 33233076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical comparison of statistical methods for quantifying variability and uncertainty of microbial responses from experimental data.
    Garre A; Pielaat A; Zwietering MH; den Besten HMW; Smid JH
    Int J Food Microbiol; 2022 Dec; 383():109935. PubMed ID: 36183424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Strain Variability in Inactivation of Campylobacter jejuni in Simulated Gastric Fluid by Using Hierarchical Bayesian Modeling.
    Koyama K; Ranta J; Takeoka K; Abe H; Koseki S
    Appl Environ Microbiol; 2021 Jul; 87(15):e0091821. PubMed ID: 34047637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.
    Pouillot R; Albert I; Cornu M; Denis JB
    Int J Food Microbiol; 2003 Mar; 81(2):87-104. PubMed ID: 12457583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.
    Garre A; Zwietering MH; van Boekel MAJS
    Int J Food Microbiol; 2022 Nov; 380():109871. PubMed ID: 35985079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain Variability in Growth and Thermal Inactivation Characteristics of Listeria monocytogenes Strains after Acid Adaptation.
    Wang X; Tian S; Wu Y; Li H; Bai LI; Liu H; Zhang X; Dong Q
    J Food Prot; 2021 Dec; 84(12):2229-2236. PubMed ID: 34197590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon.
    Delignette-Muller ML; Cornu M; Pouillot R; Denis JB
    Int J Food Microbiol; 2006 Feb; 106(2):195-208. PubMed ID: 16216374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive modelling of the growth and survival of Listeria in fishery products.
    Ross T; Dalgaard P; Tienungoon S
    Int J Food Microbiol; 2000 Dec; 62(3):231-45. PubMed ID: 11156267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Strain variability of foodborne pathogens in microbiological risk assessment - a review].
    Tian S; Wang X; Li H; Bai L; Liu H; Zhang X; Dong Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2334-2344. PubMed ID: 33244928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain Variability of
    Aalto-Araneda M; Pöntinen A; Pesonen M; Corander J; Markkula A; Tasara T; Stephan R; Korkeala H
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900307
    [No Abstract]   [Full Text] [Related]  

  • 11. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying variability on thermal resistance of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Jan; 193():130-8. PubMed ID: 25462932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of the stress resistance induced in Listeria monocytogenes during dynamic, mild heat treatments.
    Garre A; González-Tejedor GA; Aznar A; Fernández PS; Egea JA
    Food Microbiol; 2019 Dec; 84():103238. PubMed ID: 31421752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the frequency and duration of microbial contamination events.
    Powell MR
    Int J Food Microbiol; 2006 Jul; 110(1):93-9. PubMed ID: 16690153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A secondary model for the effect of pH on the variability in growth fitness of Listeria innocua strains.
    Garcia-Gutierrez E; Monteoliva García G; Bodea I; Cotter PD; Iguaz A; Garre A
    Food Res Int; 2024 Jun; 186():114314. PubMed ID: 38729708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in the heat resistance of Listeria monocytogenes under dynamic conditions can be more relevant than that evidenced by isothermal treatments.
    Clemente-Carazo M; Cebrián G; Garre A; Palop A
    Food Res Int; 2020 Nov; 137():109538. PubMed ID: 33233166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N; Cornu M; Beaufort A; Rosso L; Denis JB
    Risk Anal; 2005 Feb; 25(1):39-48. PubMed ID: 15787755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying strain variability in modeling growth of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Sep; 208():19-29. PubMed ID: 26011600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.