These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33233162)

  • 21. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies.
    Liu J; Wu J; Cai X; Zhang S; Liang Y; Lin Q
    Food Microbiol; 2021 May; 95():103689. PubMed ID: 33397619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Addition of genistein to the fermentation process reduces citrinin production by Monascus via changes at the transcription level.
    Ouyang W; Liu X; Wang Y; Huang Z; Li X
    Food Chem; 2021 May; 343():128410. PubMed ID: 33406573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species.
    Liu A; Juan Chen A; Liu B; Wei Q; Bai J; Hu Y
    Fungal Genet Biol; 2022 May; 160():103687. PubMed ID: 35315337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mrhst4 gene, coding for NAD+-dependent deacetylase is involved in citrinin production of Monascus ruber.
    Hu Y; Zheng Y; Liu B; Gong Y; Shao Y
    J Appl Microbiol; 2023 Mar; 134(3):. PubMed ID: 36849138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles.
    Magro M; Moritz DE; Bonaiuto E; Baratella D; Terzo M; Jakubec P; Malina O; Čépe K; Aragao GMF; Zboril R; Vianello F
    Food Chem; 2016 Jul; 203():505-512. PubMed ID: 26948644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain.
    Gao J; Song C; Zhang J; Hu Y; Shao Y
    J Appl Microbiol; 2022 Aug; 133(2):591-606. PubMed ID: 35451171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.
    Zhang L; Li Z; Dai B; Zhang W; Yuan Y
    Acta Biol Hung; 2013 Sep; 64(3):385-94. PubMed ID: 24013899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7.
    Li L; Shao Y; Li Q; Yang S; Chen F
    FEMS Microbiol Lett; 2010 Jul; 308(2):108-14. PubMed ID: 20500530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New monascus metabolite isolated from red yeast rice (angkak, red koji).
    Wild D; Tóth G; Humpf HU
    J Agric Food Chem; 2002 Jul; 50(14):3999-4002. PubMed ID: 12083873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001.
    Jia XQ; Xu ZN; Zhou LP; Sung CK
    Metab Eng; 2010 Jan; 12(1):1-7. PubMed ID: 19699814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triton X-100 supplementation regulates growth and secondary metabolite biosynthesis during in-depth extractive fermentation of Monascus purpureus.
    Lu P; Wu A; Zhang S; Bai J; Guo T; Lin Q; Liu J
    J Biotechnol; 2021 Nov; 341():137-145. PubMed ID: 34601020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.
    Wang L; Dai Y; Chen W; Shao Y; Chen F
    J Agric Food Chem; 2016 Dec; 64(50):9506-9514. PubMed ID: 27998068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910.
    Wang M; Huang T; Chen G; Wu Z
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3121-3130. PubMed ID: 28091787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation.
    Zhang X; Liu W; Chen X; Cai J; Wang C; He W
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28257052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into Monascus biology at the genetic level.
    Shao Y; Lei M; Mao Z; Zhou Y; Chen F
    Appl Microbiol Biotechnol; 2014 May; 98(9):3911-22. PubMed ID: 24633442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and sequence analysis of the full-length cDNA of a novel yp05 gene associated with citrinin production in Monascus aurantiacus.
    Xiong YH; Xu Y; Lai WH; Li YP; Wei H
    Biomed Environ Sci; 2007 Apr; 20(2):135-40. PubMed ID: 17624188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange
    Patrovsky M; Sinovska K; Branska B; Patakova P
    Food Sci Nutr; 2019 Nov; 7(11):3494-3500. PubMed ID: 31763000
    [No Abstract]   [Full Text] [Related]  

  • 40. The Effect of Blue Light on the Production of Citrinin in
    Yang H; Wang X; Li Z; Guo Q; Yang M; Chen D; Wang C
    Toxins (Basel); 2019 Sep; 11(9):. PubMed ID: 31540336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.