These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33233173)

  • 1. Geographical differentiation of apple ciders based on volatile fingerprint.
    Sousa A; Vareda J; Pereira R; Silva C; Câmara JS; Perestrelo R
    Food Res Int; 2020 Nov; 137():109550. PubMed ID: 33233173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages.
    Rodrigues F; Caldeira M; Câmara JS
    Anal Chim Acta; 2008 Feb; 609(1):82-104. PubMed ID: 18243877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavor profiling of apple ciders from the UK and Scandinavian region.
    Qin Z; Petersen MA; Bredie WLP
    Food Res Int; 2018 Mar; 105():713-723. PubMed ID: 29433266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Volatilomic Fingerprint from Apple Fruits to Ciders: A Useful Tool to Find Putative Biomarkers for Each Apple Variety.
    Medina S; Perestrelo R; Pereira R; Câmara JS
    Foods; 2020 Dec; 9(12):. PubMed ID: 33317039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction.
    Xu Y; Fan W; Qian MC
    J Agric Food Chem; 2007 Apr; 55(8):3051-7. PubMed ID: 17355142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An HS-SPME-GC-MS Method for Profiling Volatile Compounds as Related to Technology Used in Cider Production.
    Nešpor J; Karabín M; Štulíková K; Dostálek P
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations.
    Wei J; Zhang Y; Wang Y; Ju H; Niu C; Song Z; Yuan Y; Yue T
    Int J Food Microbiol; 2020 Apr; 318():108471. PubMed ID: 31841786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains.
    Pando Bedriñana R; Picinelli Lobo A; Rodríguez Madrera R; Suárez Valles B
    Food Chem; 2020 Apr; 310():125831. PubMed ID: 31787391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Volatile Compounds and Sugar Content in Three Polish Regional Ciders with Pear Addition.
    Kliks J; Kawa-Rygielska J; Gasiński A; Głowacki A; Szumny A
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32764441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars.
    He W; Liu S; Heponiemi P; Heinonen M; Marsol-Vall A; Ma X; Yang B; Laaksonen O
    Food Chem; 2021 May; 345():128833. PubMed ID: 33341559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin.
    Guo J; Yue T; Yuan Y
    J Food Sci; 2012 Oct; 77(10):C1090-6. PubMed ID: 23009695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS.
    Mu Y; Zeng C; Qiu R; Yang J; Zhang H; Song J; Yuan J; Sun J; Kang S
    Metabolites; 2023 Sep; 13(9):. PubMed ID: 37755278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Typicality Assessment of Onions (
    Fernandes S; Gois A; Mendes F; Perestrelo R; Medina S; Câmara JS
    Foods; 2020 Mar; 9(3):. PubMed ID: 32213815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii).
    Chen X; Feng T; Zhang Y; He T; Feng J; Zhang C
    J Genet Genomics; 2007 Feb; 34(2):171-9. PubMed ID: 17469789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.
    Eleutério Dos Santos CM; Pietrowski Gde A; Braga CM; Rossi MJ; Ninow J; Machado Dos Santos TP; Wosiacki G; Jorge RM; Nogueira A
    J Food Sci; 2015 Jun; 80(6):C1170-7. PubMed ID: 25920613
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Januszek M; Satora P; Wajda Ł; Tarko T
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32650562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of Fresh and Processed Fruit Juices Using Volatile Composition.
    Perestrelo R; Silva C; Silva P; Medina S; Câmara JS
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30857357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic, olfactometric and consumer description of sweet ciders obtained by cryo-extraction.
    Picinelli Lobo A; Pando Bedriñana R; Rodríguez Madrera R; Suárez Valles B
    Food Chem; 2021 Feb; 338():127829. PubMed ID: 32818867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of Cultivated Regions of Soybeans (
    Kim SY; Kim SY; Lee SM; Lee DY; Shin BK; Kang DJ; Choi HK; Kim YS
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.