These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33233214)

  • 1. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro.
    Salah M; Mansour M; Zogona D; Xu X
    Food Res Int; 2020 Nov; 137():109635. PubMed ID: 33233214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro.
    Ge J; Yue X; Wang S; Chi J; Liang J; Sun Y; Gao X; Yue P
    Food Res Int; 2019 Feb; 116():336-345. PubMed ID: 30716954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
    Li B; Du W; Jin J; Du Q
    J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model.
    Gao J; Mao Y; Xiang C; Cao M; Ren G; Wang K; Ma X; Wu D; Xie H
    Food Chem; 2021 Aug; 354():129516. PubMed ID: 33744663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and characterization of nanocapsules loaded with roselle anthocyanins extract and enhancement of anthocyanins bioaccessibility.
    Song W; Yuan Q; Xie Y; Wang Y; Deng D; Guo H
    Food Chem; 2024 Nov; 459():140446. PubMed ID: 39018620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate.
    Dai W; Ruan C; Sun Y; Gao X; Liang J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110802. PubMed ID: 31958618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.
    Aditya NP; Yang H; Kim S; Ko S
    Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoencapsulation in low-molecular-weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin.
    Chatterjee NS; Dara PK; Perumcherry Raman S; Vijayan DK; Sadasivam J; Mathew S; Ravishankar CN; Anandan R
    J Sci Food Agric; 2021 Sep; 101(12):5264-5271. PubMed ID: 33646598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions.
    Qie X; Chen Y; Quan W; Wang Z; Zeng M; Qin F; Chen J; He Z
    Food Funct; 2020 May; 11(5):3867-3878. PubMed ID: 32426776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH.
    Wang Z; Liu J; Gao J; Cao M; Ren G; Xie H; Yao M
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
    Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M
    J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of β-lactoglobulin against heat induced loss of antioxidant activity of resveratrol.
    Guo Y; Jauregi P
    Food Chem; 2018 Nov; 266():101-109. PubMed ID: 30381164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies.
    Simões LS; Martins JT; Pinheiro AC; Vicente AA; Ramos OL
    Food Res Int; 2020 May; 131():108979. PubMed ID: 32247463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of milk β-lactoglobulin by chitosan nanoparticles.
    Agudelo D; Nafisi S; Tajmir-Riahi HA
    J Phys Chem B; 2013 May; 117(21):6403-9. PubMed ID: 23651207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviour of cyanidin-3-glucoside, β-lactoglobulin and polysaccharides nanoparticles in bulk and oil-in-water interfaces.
    Oliveira A; Ruiz-Henestrosa VM; von Staszewski M; Pilosof AM; Pintado M
    Carbohydr Polym; 2015 Nov; 132():460-71. PubMed ID: 26256371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface methodology for the optimization of beta-lactoglobulin nano-liposomes.
    Ma J; Guan R; Chen X; Wang Y; Hao Y; Ye X; Liu M
    Food Funct; 2014 Apr; 5(4):748-54. PubMed ID: 24554141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical properties, antioxidant activities, and binding behavior of 3,5-di-O-caffeoylquinic acid with beta-lactoglobulin colloidal particles.
    Makori SI; Mu TH; Sun HN
    Food Chem; 2021 Jun; 347():129084. PubMed ID: 33486366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of
    Ha HK; Nam GW; Khang D; Park SJ; Lee MR; Lee WJ
    Korean J Food Sci Anim Resour; 2017; 37(1):123-133. PubMed ID: 28316479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation of β-lactoglobulin with gum arabic: Effect of heat treatment and enhanced encapsulation efficiency.
    Cao M; Gao J; Li Y; Liu C; Shi J; Ni F; Ren G; Xie H
    Food Sci Nutr; 2021 Mar; 9(3):1399-1409. PubMed ID: 33747454
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.