These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33233219)
1. Microbiological and process variability using biological indicators of inactivation (BIIs) based on Bacillus cereus spores of food and fish-based animal by-products to evaluate microwave heating in a pilot plant. Garre A; Acosta A; Reverte-Orts JD; Periago PM; Díaz-Morcillo A; Esnoz A; Pedreño-Molina JL; Fernández PS Food Res Int; 2020 Nov; 137():109640. PubMed ID: 33233219 [TBL] [Abstract][Full Text] [Related]
2. The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products. Samapundo S; Heyndrickx M; Xhaferi R; de Baenst I; Devlieghere F Int J Food Microbiol; 2014 Jul; 181():10-8. PubMed ID: 24801270 [TBL] [Abstract][Full Text] [Related]
3. Effective Thermal Inactivation of the Spores of Park HS; Yang J; Choi HJ; Kim KH J Microbiol Biotechnol; 2017 Jul; 27(7):1209-1215. PubMed ID: 28423891 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of utilizing bioindicators for testing microbial inactivation in sweetpotato purees processed with a continuous-flow microwave system. Brinley TA; Dock CN; Truong VD; Coronel P; Kumar P; Simunovic J; Sandeep KP; Cartwright GD; Swartzel KR; Jaykus LA J Food Sci; 2007 Jun; 72(5):E235-42. PubMed ID: 17995721 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes. Ryang JH; Kim NH; Lee BS; Kim CT; Lee SH; Hwang IG; Rhee MS J Appl Microbiol; 2016 Jan; 120(1):175-84. PubMed ID: 26497155 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the response of indigenous microflora and inoculated Bacillus licheniformis endospores in reconstituted skim milk to microwave and conventional heating systems by flow cytometry. Li F; Santillan-Urquiza E; Cronin U; O'Meara E; McCarthy W; Hogan SA; Wilkinson MG; Tobin JT J Dairy Sci; 2021 Sep; 104(9):9627-9644. PubMed ID: 34127263 [TBL] [Abstract][Full Text] [Related]
7. Destruction of Bacillus cereus spores in a thick soy bean paste (doenjang) by continuous ohmic heating with five sequential electrodes. Ryang JH; Kim NH; Lee BS; Kim CT; Rhee MS Lett Appl Microbiol; 2016 Jul; 63(1):66-73. PubMed ID: 27214292 [TBL] [Abstract][Full Text] [Related]
8. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity. Reverte-Ors JD; Pedreño-Molina JL; Fernández PS; Lozano-Guerrero AJ; Periago PM; Díaz-Morcillo A Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590423 [TBL] [Abstract][Full Text] [Related]
9. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Kim JE; Oh YJ; Won MY; Lee KS; Min SC Food Microbiol; 2017 Apr; 62():112-123. PubMed ID: 27889137 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves. Bulhões Bezerra Cavalcante TA; Santos Funcia ED; Wilhelms Gut JA Food Chem; 2021 Mar; 340():127911. PubMed ID: 32896778 [TBL] [Abstract][Full Text] [Related]
11. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage. Daelman J; Vermeulen A; Willemyns T; Ongenaert R; Jacxsens L; Uyttendaele M; Devlieghere F Int J Food Microbiol; 2013 Jan; 161(1):7-15. PubMed ID: 23246607 [TBL] [Abstract][Full Text] [Related]
12. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186 [TBL] [Abstract][Full Text] [Related]
13. Effect of Microwaves on Microorganisms in Foods Fung DYC; Cunningham FE J Food Prot; 1980 Aug; 43(8):641-650. PubMed ID: 30822987 [TBL] [Abstract][Full Text] [Related]
14. [Heat treatment for the control of Bacillus cereus spores in foods]. Tanaka K; Motoi H; Hara-Kudo Y Shokuhin Eiseigaku Zasshi; 2005 Feb; 46(1):1-7. PubMed ID: 15881248 [TBL] [Abstract][Full Text] [Related]
15. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Aguirre JS; Ordóñez JA; García de Fernando GD Int J Food Microbiol; 2012 Feb; 153(3):444-52. PubMed ID: 22225985 [TBL] [Abstract][Full Text] [Related]
16. Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line. Guinebretiere MH; Girardin H; Dargaignaratz C; Carlin F; Nguyen-The C Int J Food Microbiol; 2003 May; 82(3):223-32. PubMed ID: 12593925 [TBL] [Abstract][Full Text] [Related]
17. Research progress in fluid and semifluid microwave heating technology in food processing. Wu Y; Mu R; Li G; Li M; Lv W Compr Rev Food Sci Food Saf; 2022 Jul; 21(4):3436-3454. PubMed ID: 35686487 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Spilimbergo S; Dehghani F; Bertucco A; Foster NR Biotechnol Bioeng; 2003 Apr; 82(1):118-25. PubMed ID: 12569631 [TBL] [Abstract][Full Text] [Related]
20. Effects of sequential treatments using radio frequency energy and ultraviolet light on inactivation of Bacillus cereus spores and quality attributes of buckwheat. Xu J; Xu Y; Guan X; Yang G; Wang S Int J Food Microbiol; 2023 Jan; 385():109997. PubMed ID: 36334351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]