These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33233296)
1. Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Silva ACR; da Silva CC; Garrett R; Rezende CM Food Res Int; 2020 Nov; 137():109727. PubMed ID: 33233296 [TBL] [Abstract][Full Text] [Related]
2. Revealing the dynamic changes of lipids in coffee beans during roasting based on UHPLC-QE-HR-AM/MS/MS. Zhu J; Zhou L; Zhao M; Wei F; Fu H; Marchioni E Food Res Int; 2023 Dec; 174(Pt 1):113507. PubMed ID: 37986503 [TBL] [Abstract][Full Text] [Related]
3. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans. Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213 [TBL] [Abstract][Full Text] [Related]
4. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS). Mendonça JC; Franca AS; Oliveira LS; Nunes M Food Chem; 2008 Nov; 111(2):490-7. PubMed ID: 26047455 [TBL] [Abstract][Full Text] [Related]
5. Characterizing lipid constituents of B. moojeni snake venom: a comparative approach for chemical and biological investigations. Carvalho NS; Nardini V; Veronezes RM; Maciel JB; Trabuco AC; De Carvalho MF; Fontanari C; Sartim MA; de Moraes LAB; Faccioli LH Arch Toxicol; 2024 Oct; 98(10):3491-3502. PubMed ID: 38951190 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Ulmer CZ; Jones CM; Yost RA; Garrett TJ; Bowden JA Anal Chim Acta; 2018 Dec; 1037():351-357. PubMed ID: 30292311 [TBL] [Abstract][Full Text] [Related]
7. Melatonin and serotonin profiles in beans of Coffea species. Ramakrishna A; Giridhar P; Sankar KU; Ravishankar GA J Pineal Res; 2012 May; 52(4):470-6. PubMed ID: 22017393 [TBL] [Abstract][Full Text] [Related]
8. Profiling of human urinary phospholipids by nanoflow liquid chromatography/tandem mass spectrometry. Kim H; Ahn E; Moon MH Analyst; 2008 Dec; 133(12):1656-63. PubMed ID: 19082067 [TBL] [Abstract][Full Text] [Related]
9. High-throughput metabolic profiling of diverse green Coffea arabica beans identified tryptophan as a universal discrimination factor for immature beans. Setoyama D; Iwasa K; Seta H; Shimizu H; Fujimura Y; Miura D; Wariishi H; Nagai C; Nakahara K PLoS One; 2013; 8(8):e70098. PubMed ID: 23936381 [TBL] [Abstract][Full Text] [Related]
10. Effect of growing conditions and postharvest processing on arabica coffee bean physical quality features and defects. Worku M; Astatkie T; Boeckx P Heliyon; 2022 Apr; 8(4):e09201. PubMed ID: 35399386 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. De Bruyn F; Zhang SJ; Pothakos V; Torres J; Lambot C; Moroni AV; Callanan M; Sybesma W; Weckx S; De Vuyst L Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793826 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive and High-Coverage Lipidomic Analysis of Oilseeds Based on Ultrahigh-Performance Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Hu A; Wei F; Huang F; Xie Y; Wu B; Lv X; Chen H J Agric Food Chem; 2021 Aug; 69(32):8964-8980. PubMed ID: 33529031 [TBL] [Abstract][Full Text] [Related]
14. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Monnin C; Ramrup P; Daigle-Young C; Vuckovic D Rapid Commun Mass Spectrom; 2018 Feb; 32(3):201-211. PubMed ID: 29105990 [TBL] [Abstract][Full Text] [Related]
15. Lipid content and composition of coffee brews prepared by different methods. Ratnayake WM; Hollywood R; O'Grady E; Stavric B Food Chem Toxicol; 1993 Apr; 31(4):263-9. PubMed ID: 8477916 [TBL] [Abstract][Full Text] [Related]
16. 2-Methyloxolane as an effective bio-based solvent for the removal of Beccari F; Binello A; Tagliapietra S; Bovolin P; Cravotto G Food Chem; 2024 Nov; 457():140135. PubMed ID: 38901340 [No Abstract] [Full Text] [Related]
17. Hierarchical scheme for liquid chromatography/multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beans. Jaiswal R; Kuhnert N Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2283-94. PubMed ID: 20607843 [TBL] [Abstract][Full Text] [Related]
18. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Badmos S; Lee SH; Kuhnert N Food Res Int; 2019 Dec; 126():108544. PubMed ID: 31732084 [TBL] [Abstract][Full Text] [Related]
19. Lipidomic Changes in Banana ( Sun F; Chen H; Chen D; Tan H; Huang Y; Cozzolino D J Agric Food Chem; 2020 Oct; 68(40):11309-11316. PubMed ID: 32907317 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive Analysis of Metabolites in Brews Prepared from Naturally and Technologically Treated Coffee Beans. Jeszka-Skowron M; Frankowski R; Zgoła-Grześkowiak A; Płatkiewicz J Antioxidants (Basel); 2022 Dec; 12(1):. PubMed ID: 36670958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]