These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33233302)
1. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Yue X; Ren R; Ma X; Fang Y; Zhang Z; Ju Y Food Res Int; 2020 Nov; 137():109736. PubMed ID: 33233302 [TBL] [Abstract][Full Text] [Related]
2. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines. Yue X; Ma X; Tang Y; Wang Y; Wu B; Jiao X; Zhang Z; Ju Y Food Res Int; 2020 May; 131():109028. PubMed ID: 32247455 [TBL] [Abstract][Full Text] [Related]
3. Evolution of green leaf volatile profile and aroma potential during the berry development in five Yue X; Ju Y; Cui Y; Wei S; Xu H; Zhang Z Food Chem X; 2023 Jun; 18():100676. PubMed ID: 37122554 [TBL] [Abstract][Full Text] [Related]
4. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Yang Y; Jin GJ; Wang XJ; Kong CL; Liu J; Tao YS Food Chem; 2019 Jun; 284():155-161. PubMed ID: 30744840 [TBL] [Abstract][Full Text] [Related]
5. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine. Yue X; Shi P; Tang Y; Zhang H; Ma X; Ju Y; Zhang Z J Sci Food Agric; 2021 Jul; 101(9):3665-3675. PubMed ID: 33280112 [TBL] [Abstract][Full Text] [Related]
6. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Yue X; Ju Y; Zhang H; Wang Z; Xu H; Zhang Z Food Res Int; 2022 Dec; 162(Pt B):112065. PubMed ID: 36461322 [TBL] [Abstract][Full Text] [Related]
7. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Pardo E; Rico J; Gil JV; Orejas M Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186 [TBL] [Abstract][Full Text] [Related]
8. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)-N-phenylurea applications on aroma quality. Wu Y; Li X; Zhang W; Wang L; Li B; Wang S Food Res Int; 2023 Aug; 170():112950. PubMed ID: 37316003 [TBL] [Abstract][Full Text] [Related]
9. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Zhang E; Chai F; Zhang H; Li S; Liang Z; Fan P Food Chem; 2017 Dec; 237():379-389. PubMed ID: 28764010 [TBL] [Abstract][Full Text] [Related]
10. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics. Chen H; Yang J; Deng X; Lei Y; Xie S; Guo S; Ren R; Li J; Zhang Z; Xu T Food Chem; 2020 Jun; 314():126182. PubMed ID: 31968293 [TBL] [Abstract][Full Text] [Related]
11. Phenolic matrix effect on aroma formation of terpenes during simulated wine fermentation - Part I: Phenolic acids. Wang XJ; Li YK; Song HC; Tao YS; Russo N Food Chem; 2021 Mar; 341(Pt 2):128288. PubMed ID: 33039738 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). Chen T; Xu T; Wang J; Zhang T; Yang J; Feng L; Song T; Yang J; Wu Y BMC Plant Biol; 2024 Jun; 24(1):595. PubMed ID: 38914931 [TBL] [Abstract][Full Text] [Related]
13. Dynamic changes in anthocyanin biosynthesis regulation of Cabernet Sauvignon (Vitis vinifera L.) grown during the rainy season under rain-shelter cultivation. Duan B; Song C; Zhao Y; Jiang Y; Shi P; Meng J; Zhang Z Food Chem; 2019 Jun; 283():404-413. PubMed ID: 30722891 [TBL] [Abstract][Full Text] [Related]
14. Basic leucine zipper gene Zhang Y; Liu C; Liu X; Wang Z; Wang Y; Zhong GY; Li S; Dai Z; Liang Z; Fan P Hortic Res; 2023 Sep; 10(9):uhad151. PubMed ID: 37701455 [TBL] [Abstract][Full Text] [Related]
15. Molecular Rearrangement of Four Typical Grape Free Terpenes in the Wine Environment. Yang Y; Frank S; Wei X; Wang X; Li Y; Steinhaus M; Tao Y J Agric Food Chem; 2023 Jan; 71(1):721-728. PubMed ID: 36592095 [TBL] [Abstract][Full Text] [Related]
16. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Li XY; Wen YQ; Meng N; Qian X; Pan QH Front Plant Sci; 2017; 8():1226. PubMed ID: 28751905 [No Abstract] [Full Text] [Related]
17. Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Martin DM; Bohlmann J Phytochemistry; 2004 May; 65(9):1223-9. PubMed ID: 15184006 [TBL] [Abstract][Full Text] [Related]
18. Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera). Wu Y; Zhang W; Song S; Xu W; Zhang C; Ma C; Wang L; Wang S Food Chem; 2020 Mar; 309():125778. PubMed ID: 31704071 [TBL] [Abstract][Full Text] [Related]
19. Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Guo SH; Xu TF; Shi TC; Jin XQ; Feng MX; Zhao XH; Zhang ZW; Meng JF Food Chem; 2020 Feb; 305():125502. PubMed ID: 31606692 [TBL] [Abstract][Full Text] [Related]
20. Regional characteristics of anthocyanin and flavonol compounds from grapes of four Vitis vinifera varieties in five wine regions of China. Liang NN; Zhu BQ; Han S; Wang JH; Pan QH; Reeves MJ; Duan CQ; He F Food Res Int; 2014 Oct; 64():264-274. PubMed ID: 30011650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]