These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33233371)

  • 1. Alloy Design, Thermodynamics, and Electron Microscopy of Ternary Ti-Ag-Nb Alloy with Liquid Phase Separation.
    Nagase T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Ti-Nb-Ti
    Sato K; Takahashi M; Takada Y
    Dent Mater J; 2020 Jun; 39(3):422-428. PubMed ID: 31969544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solidification Microstructures of the Ingots Obtained by Arc Melting and Cold Crucible Levitation Melting in TiNbTaZr Medium-Entropy Alloy and TiNbTaZrX (X = V, Mo, W) High-Entropy Alloys.
    Nagase T; Mizuuchi K; Nakano T
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials.
    Nagase T; Iijima Y; Matsugaki A; Ameyama K; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications.
    Afonso CR; Ferrandini PL; Ramirez AJ; Caram R
    Acta Biomater; 2010 Apr; 6(4):1625-9. PubMed ID: 19913645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Equilibria, Solidified Microstructure, and Hydrogen Transport Behaviour in the V-Ti-Co System.
    Yan E; Guo Z; Jia L; Wang Y; Zhang S; Li T; Zou Y; Chu H; Zhang H; Xu F; Sun L
    Membranes (Basel); 2023 Sep; 13(9):. PubMed ID: 37755212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study of the Effect of 2 at.% Sn on the Microstructure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si-Based Alloys with Al and/or Cr Additions.
    Xu Z; Utton C; Tsakiropoulos P
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.
    Karre R; Niranjan MK; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():52-8. PubMed ID: 25746245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase Equilibria, Thermodynamics and Solidified Microstructure in the Copper-Zirconium-Yttrium System.
    Jing F; Liu Y; Du Y; Shi C; Hu B; He X
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Ni on the microstructures and electrochemical properties of Si-Ti base alloys for lithium secondary batteries.
    Ahn DK; Song JJ; Ahn HJ; Cho JS; Moon JT; Park WW; Sohn KY
    J Nanosci Nanotechnol; 2013 May; 13(5):3522-5. PubMed ID: 23858893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation in ternary Co-Gd-Ti liquids.
    Han JH; Mattern N; Kaban I; Holland-Moritz D; Bednarĉik J; Nowak R; Sobczak N; Kim DH; Eckert J
    J Phys Condens Matter; 2013 Jun; 25(24):245104. PubMed ID: 23719025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the mechanical properties and corrosion behavior of the new as-cast TZNT alloys for biomedical applications.
    Zareidoost A; Yousefpour M
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110725. PubMed ID: 32204036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Copper Alloying in a TNTZ-Cu
    Fowler L; Janse Van Vuuren A; Goosen W; Engqvist H; Öhman-Mägi C; Norgren S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis.
    Al Jabbari Y; Fournelle R; Ziebert G; Toth J; Iacopino A
    J Prosthodont; 2008 Apr; 17(3):181-91. PubMed ID: 18047489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti
    Shi A; Zhu C; Fu S; Wang R; Qin G; Chen D; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110548. PubMed ID: 32228943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.
    Chen M; Zhang E; Zhang L
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy.
    Liu T; Tao J; Cai X; Chen D; Li J; Luo L; Cheng Z; Su Y
    Heliyon; 2022 Jan; 8(1):e08704. PubMed ID: 35028474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium alloys with varying surface micro-area potential differences have antibacterial abilities and a favorable cellular response.
    Wang C; Hou Y; Fu S; Zhang E; Zhang Z; Bai B
    Clin Oral Investig; 2023 Sep; 27(9):4957-4971. PubMed ID: 37329465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.