These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33233384)

  • 21. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlocal Analysis of the Flexural-Torsional Stability for FG Tapered Thin-Walled Beam-Columns.
    Soltani M; Atoufi F; Mohri F; Dimitri R; Tornabene F
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions.
    Civalek Ö; Uzun B; Yaylı MÖ
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of nonlocal models to nano beams. Part II: Thickness length scale effect.
    Kim JS
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7597-602. PubMed ID: 25942832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity.
    Ahmad H; Abouelregal AE; Benhamed M; Alotaibi MF; Jendoubi A
    Sci Rep; 2022 Feb; 12(1):1894. PubMed ID: 35115646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Band structure calculation of SH waves in nanoscale multilayered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects.
    Yan Z; Wei C; Zhang C
    Ultrasonics; 2017 Jan; 73():169-180. PubMed ID: 27662480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method.
    Yi X; Li B; Wang Z
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31847397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory.
    Su Y; Zhou Z
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.
    Sorokin SV
    J Acoust Soc Am; 2011 Mar; 129(3):1315-23. PubMed ID: 21428495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastostatics of Bernoulli-Euler Beams Resting on Displacement-Driven Nonlocal Foundation.
    Vaccaro MS; Pinnola FP; Marotti de Sciarra F; Barretta R
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of scalar and dyadic nonlocal optical response models.
    Wubs M
    Opt Express; 2015 Nov; 23(24):31296-312. PubMed ID: 26698757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'.
    Tounsi A; Heireche H; Benzair A; Mechab I
    J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.
    Li XF; Tang GJ; Shen ZB; Lee KY
    Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs.
    Piao C; Kim JO
    Ultrasonics; 2017 Feb; 74():72-80. PubMed ID: 27743545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties.
    Li D; He T
    Heliyon; 2018 Oct; 4(10):e00860. PubMed ID: 30364645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlocal Vibration Analysis of a Nonuniform Carbon Nanotube with Elastic Constraints and an Attached Mass.
    De Rosa MA; Lippiello M; Babilio E; Ceraldi C
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods.
    Ragb O; Mohamed M; Matbuly MS
    Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells.
    Liu YF; Wang YQ
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes.
    Karami B; Janghorban M; Shahsavari D; Dimitri R; Tornabene F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.