These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33233412)

  • 1. A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems.
    Jalal A; Quaid MAK; Tahir SBUD; Kim K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Inertial Sensors for Daily Activity Analysis Based on Adam Optimization and the Maximum Entropy Markov Model.
    Tahir SBUD; Jalal A; Kim K
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor Type, Axis, and Position-Based Fusion and Feature Selection for Multimodal Human Daily Activity Recognition in Wearable Body Sensor Networks.
    Badawi AA; Al-Kabbany A; Shaban HA
    J Healthc Eng; 2020; 2020():7914649. PubMed ID: 32587667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors.
    Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    J Neuroeng Rehabil; 2020 Nov; 17(1):148. PubMed ID: 33148315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of team sport activities using a single wearable tracking device.
    Wundersitz DWT; Josman C; Gupta R; Netto KJ; Gastin PB; Robertson S
    J Biomech; 2015 Nov; 48(15):3975-3981. PubMed ID: 26472301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors.
    Ranieri CM; MacLeod S; Dragone M; Vargas PA; Romero RAF
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model.
    Tahir SBUD; Dogar AB; Fatima R; Yasin A; Shafiq M; Khan JA; Assam M; Mohamed A; Attia EA
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Framework for Maternal Physical Activities and Health Monitoring Using Wearable Sensors.
    Ullah F; Iqbal A; Iqbal S; Kwak D; Anwar H; Khan A; Ullah R; Siddique H; Kwak KS
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Combination of Indoor Localization and Wearable Sensor-Based Physical Activity Recognition to Assess Older Patients Undergoing Subacute Rehabilitation: Baseline Study Results.
    Ramezani R; Zhang W; Xie Z; Shen J; Elashoff D; Roberts P; Stanton A; Eslami M; Wenger N; Sarrafzadeh M; Naeim A
    JMIR Mhealth Uhealth; 2019 Jul; 7(7):e14090. PubMed ID: 31293244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.