BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33233553)

  • 21. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway.
    Ding J; Tang Q; Luo B; Zhang L; Lin L; Han L; Hao M; Li M; Yu L; Li M
    Eur J Pharmacol; 2019 Sep; 859():172549. PubMed ID: 31325434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane rafts-redox signalling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition.
    Han WQ; Xu L; Tang XF; Chen WD; Wu YJ; Gao PJ
    J Physiol; 2018 Aug; 596(16):3603-3616. PubMed ID: 29863758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury.
    Ma S; Zhang Y; He K; Wang P; Wang DH
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F623-F631. PubMed ID: 31339777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis.
    Stawski L; Han R; Bujor AM; Trojanowska M
    Arthritis Res Ther; 2012 Aug; 14(4):R194. PubMed ID: 22913887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice.
    Ma LJ; Yang H; Gaspert A; Carlesso G; Barty MM; Davidson JM; Sheppard D; Fogo AB
    Am J Pathol; 2003 Oct; 163(4):1261-73. PubMed ID: 14507636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κBTGF-β1/Smad Signaling Pathway.
    Quan Y; Park W; Jin J; Kim W; Park SK; Kang KP
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smad3 mediates ANG II-induced hypertensive kidney disease in mice.
    Liu Z; Huang XR; Lan HY
    Am J Physiol Renal Physiol; 2012 Apr; 302(8):F986-97. PubMed ID: 22237801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion.
    Ye S; Huang H; Xiao Y; Han X; Shi F; Luo W; Chen J; Ye Y; Zhao X; Huang W; Wang Y; Lai D; Liang G; Fu G
    Cell Mol Life Sci; 2023 Jun; 80(7):184. PubMed ID: 37340199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension.
    Li N; Zhang J; Yan X; Zhang C; Liu H; Shan X; Li J; Yang Y; Huang C; Zhang P; Zhang Y; Bu P
    Oncotarget; 2017 Jun; 8(24):39592-39604. PubMed ID: 28465484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal macrophages induce hypertension and kidney fibrosis in Angiotensin II salt mice model.
    Peter JK; Umene R; Wu CH; Nakamura Y; Washimine N; Yamamoto R; Ngugi C; Linge K; Kweri JK; Inoue T
    Biochem Biophys Res Commun; 2024 Jun; 715():149997. PubMed ID: 38678782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2.
    Zhong J; Guo D; Chen CB; Wang W; Schuster M; Loibner H; Penninger JM; Scholey JW; Kassiri Z; Oudit GY
    Hypertension; 2011 Feb; 57(2):314-22. PubMed ID: 21189404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xanthine Oxidase Inhibition by Febuxostat in Macrophages Suppresses Angiotensin II-Induced Aortic Fibrosis.
    Kondo M; Imanishi M; Fukushima K; Ikuto R; Murai Y; Horinouchi Y; Izawa-Ishizawa Y; Goda M; Zamami Y; Takechi K; Chuma M; Ikeda Y; Fujino H; Tsuchiya K; Ishizawa K
    Am J Hypertens; 2019 Feb; 32(3):249-256. PubMed ID: 30351343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via p53 Acetylation.
    Su H; Cantrell AC; Chen JX; Gu W; Zeng H
    Cells; 2023 May; 12(10):. PubMed ID: 37408261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.
    Morales MG; Vazquez Y; Acuña MJ; Rivera JC; Simon F; Salas JD; Alvarez Ruf J; Brandan E; Cabello-Verrugio C
    Int J Biochem Cell Biol; 2012 Nov; 44(11):1993-2002. PubMed ID: 22964022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy.
    Yu W; Gao B; Li N; Wang J; Qiu C; Zhang G; Liu M; Zhang R; Li C; Ji G; Zhang Y
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):1973-1983. PubMed ID: 27794418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease.
    Zhang R; Zhang YY; Huang XR; Wu Y; Chung AC; Wu EX; Szalai AJ; Wong BC; Lau CP; Lan HY
    Hypertension; 2010 Apr; 55(4):953-60. PubMed ID: 20157054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytosolic Phospholipase A2α Is Essential for Renal Dysfunction and End-Organ Damage Associated With Angiotensin II-Induced Hypertension.
    Khan NS; Song CY; Thirunavukkarasu S; Fang XR; Bonventre JV; Malik KU
    Am J Hypertens; 2016 Feb; 29(2):258-65. PubMed ID: 26045535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.
    Touyz RM; Mercure C; He Y; Javeshghani D; Yao G; Callera GE; Yogi A; Lochard N; Reudelhuber TL
    Hypertension; 2005 Apr; 45(4):530-7. PubMed ID: 15753233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SIRT3 deficiency exacerbates early-stage fibrosis after ischaemia-reperfusion-induced AKI.
    Cheng L; Yang X; Jian Y; Liu J; Ke X; Chen S; Yang D; Yang D
    Cell Signal; 2022 May; 93():110284. PubMed ID: 35182747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SIRT3 prevents angiotensin II-induced renal tubular epithelial-mesenchymal transition by ameliorating oxidative stress and mitochondrial dysfunction.
    He P; Li Z; Yue Z; Gao H; Feng G; Wang P; Huang Y; Luo W; Hong H; Liang L; Chen S; Liu P
    Mol Cell Endocrinol; 2018 Jan; 460():1-13. PubMed ID: 28579116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.