These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 33233616)
1. QTL Mapping for Resistance to Cankers Induced by Tahir J; Brendolise C; Hoyte S; Lucas M; Thomson S; Hoeata K; McKenzie C; Wotton A; Funnell K; Morgan E; Hedderley D; Chagné D; Bourke PM; McCallum J; Gardiner SE; Gea L Pathogens; 2020 Nov; 9(11):. PubMed ID: 33233616 [TBL] [Abstract][Full Text] [Related]
2. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Tahir J; Hoyte S; Bassett H; Brendolise C; Chatterjee A; Templeton K; Deng C; Crowhurst R; Montefiori M; Morgan E; Wotton A; Funnell K; Wiedow C; Knaebel M; Hedderley D; Vanneste J; McCallum J; Hoeata K; Nath A; Chagné D; Gea L; Gardiner SE Hortic Res; 2019; 6():101. PubMed ID: 31645956 [No Abstract] [Full Text] [Related]
3. Mapping QTL associated with resistance to Flay C; Symonds VV; Storey R; Davy M; Datson P Front Plant Sci; 2023; 14():1255506. PubMed ID: 38596713 [No Abstract] [Full Text] [Related]
4. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. Pereira C; Costa P; Pinheiro L; Balcão VM; Almeida A Planta; 2021 Jan; 253(2):49. PubMed ID: 33502587 [TBL] [Abstract][Full Text] [Related]
5. Real-Time PCR and Droplet Digital PCR Are Accurate and Reliable Methods To Quantify Barrett-Manako K; Andersen M; Martínez-Sánchez M; Jenkins H; Hunter S; Reese-George J; Montefiori M; Wohlers M; Rikkerink E; Templeton M; Nardozza S Plant Dis; 2021 Jun; 105(6):1748-1757. PubMed ID: 33206018 [No Abstract] [Full Text] [Related]
6. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection. Liu W; Zhao C; Liu L; Huang D; Ma C; Li R; Huang L Int J Biol Macromol; 2022 Dec; 222(Pt A):101-113. PubMed ID: 36150565 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Pseudomonas syringae pv. actinidiae biovar 3 on kiwifruit in north-west Portugal. Garcia E; Moura L; Abelleira A; Aguín O; Ares A; Mansilla P J Appl Microbiol; 2018 Oct; 125(4):1147-1161. PubMed ID: 29877004 [TBL] [Abstract][Full Text] [Related]
8. Construction of a high-density genetic map for hexaploid kiwifruit (Actinidia chinensis var. deliciosa) using genotyping by sequencing. Popowski E; Thomson SJ; Knäbel M; Tahir J; Crowhurst RN; Davy M; Foster TM; Schaffer RJ; Tustin DS; Allan AC; McCallum J; Chagné D G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 34009255 [TBL] [Abstract][Full Text] [Related]
9. Genomic Variation and Host Interaction among Zhou Y; Huang S; Tang W; Wu Z; Sun S; Qiu Y; Wang H; Chen X; Tang X; Xiao F; Liu Y; Niu X Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077140 [TBL] [Abstract][Full Text] [Related]
10. Two transcription factors, AcREM14 and AcC3H1, enhance the resistance of kiwifruit Zhao C; Liu W; Zhang Y; Li Y; Ma C; Tian R; Li R; Li M; Huang L Hortic Res; 2024 Jan; 11(1):uhad242. PubMed ID: 38222821 [TBL] [Abstract][Full Text] [Related]
11. Draft Genome Resources Sequences of Six Ares A; Tacão M; Figueira D; Garcia E; Costa J Phytopathology; 2021 Jan; 111(1):237-239. PubMed ID: 32495697 [No Abstract] [Full Text] [Related]
12. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Scortichini M; Marcelletti S; Ferrante P; Petriccione M; Firrao G Mol Plant Pathol; 2012 Sep; 13(7):631-40. PubMed ID: 22353258 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. Michelotti V; Lamontanara A; Buriani G; Orrù L; Cellini A; Donati I; Vanneste JL; Cattivelli L; Tacconi G; Spinelli F BMC Genomics; 2018 Aug; 19(1):585. PubMed ID: 30081820 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. Petriccione M; Salzano AM; Di Cecco I; Scaloni A; Scortichini M J Proteomics; 2014 Apr; 101():43-62. PubMed ID: 24530627 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis of Kiwifruit in Response to Pseudomonas syringae pv. actinidiae Infection. Wang T; Wang G; Jia ZH; Pan DL; Zhang JY; Guo ZR Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29373527 [TBL] [Abstract][Full Text] [Related]
16. The Scientific, Economic, and Social Impacts of the New Zealand Outbreak of Bacterial Canker of Kiwifruit (Pseudomonas syringae pv. actinidiae). Vanneste JL Annu Rev Phytopathol; 2017 Aug; 55():377-399. PubMed ID: 28613977 [TBL] [Abstract][Full Text] [Related]
17. A 4D Proteome Investigation of the Potential Mechanisms of SA in Triggering Resistance in Kiwifruit to Qu D; Yan F; Zhang Y; Huang L Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139278 [TBL] [Abstract][Full Text] [Related]
18. First Report of Bacterial Canker of Kiwifruit Caused by Pseudomonas syringae pv. actinidiae in Spain. Abelleira A; López MM; Peñalver J; Aguín O; Mansilla JP; Picoaga A; García MJ Plant Dis; 2011 Dec; 95(12):1583. PubMed ID: 30731983 [TBL] [Abstract][Full Text] [Related]
19. Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. McCann HC; Rikkerink EH; Bertels F; Fiers M; Lu A; Rees-George J; Andersen MT; Gleave AP; Haubold B; Wohlers MW; Guttman DS; Wang PW; Straub C; Vanneste JL; Rainey PB; Templeton MD PLoS Pathog; 2013; 9(7):e1003503. PubMed ID: 23935484 [TBL] [Abstract][Full Text] [Related]
20. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Pinheiro LAM; Pereira C; Barreal ME; Gallego PP; Balcão VM; Almeida A Appl Microbiol Biotechnol; 2020 Feb; 104(3):1319-1330. PubMed ID: 31853568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]