BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33233645)

  • 1. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton.
    Kubiak A; ZieliƄski T; Pabijan J; Lekka M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.
    Rotsch C; Radmacher M
    Biophys J; 2000 Jan; 78(1):520-35. PubMed ID: 10620315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selective cytotoxicity of DSF-Cu attributes to the biomechanical properties and cytoskeleton rearrangements in the normal and cancerous nasopharyngeal epithelial cells.
    Yang Y; Li M; Sun X; Zhou C; Wang Y; Wang L; Chen L; Liang Z; Zhu L; Yang H
    Int J Biochem Cell Biol; 2017 Mar; 84():96-108. PubMed ID: 28111334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Melanoma Nanomechanical Properties in Relation to Metastatic Ability and Anti-Cancer Drug Treatment Using Scanning Ion Conductance Microscopy.
    Woodcock E; Gorelkin PV; Goff PS; Edwards CRW; Zhang Y; Korchev Y; Sviderskaya EV
    Cells; 2023 Oct; 12(19):. PubMed ID: 37830615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Stiffness Mapping of Cells Using High-Bandwidth Atomic Force Microscopy.
    Wang A; Vijayraghavan K; Solgaard O; Butte MJ
    ACS Nano; 2016 Jan; 10(1):257-64. PubMed ID: 26554581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the cytoskeleton in cellular force generation in 2D and 3D environments.
    Kraning-Rush CM; Carey SP; Califano JP; Smith BN; Reinhart-King CA
    Phys Biol; 2011 Feb; 8(1):015009. PubMed ID: 21301071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking.
    Wu HW; Kuhn T; Moy VT
    Scanning; 1998 Aug; 20(5):389-97. PubMed ID: 9737018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy.
    Au NP; Fang Y; Xi N; Lai KW; Ma CH
    Nanomedicine; 2014 Aug; 10(6):1323-33. PubMed ID: 24632247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach.
    Chacko JV; Zanacchi FC; Diaspro A
    Cytoskeleton (Hoboken); 2013 Nov; 70(11):729-40. PubMed ID: 24027190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical properties of solid tumors as treatment monitoring biomarkers.
    Stylianou A; Mpekris F; Voutouri C; Papoui A; Constantinidou A; Kitiris E; Kailides M; Stylianopoulos T
    Acta Biomater; 2022 Dec; 154():324-334. PubMed ID: 36244596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics.
    Efremov YM; Kotova SL; Akovantseva AA; Timashev PS
    J Nanobiotechnology; 2020 Sep; 18(1):134. PubMed ID: 32943055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton.
    Haga H; Sasaki S; Kawabata K; Ito E; Ushiki T; Sambongi T
    Ultramicroscopy; 2000 Feb; 82(1-4):253-8. PubMed ID: 10741677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal changes of mesenchymal stem cells during differentiation.
    Yourek G; Hussain MA; Mao JJ
    ASAIO J; 2007; 53(2):219-28. PubMed ID: 17413564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy.
    Liu X; Wei Y; Li W; Li B; Liu L
    J Cell Physiol; 2021 May; 236(5):3725-3733. PubMed ID: 33169846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study.
    Cai X; Xing X; Cai J; Chen Q; Wu S; Huang F
    Micron; 2010 Apr; 41(3):257-62. PubMed ID: 20060729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubules and actin filaments: dynamic targets for cancer chemotherapy.
    Jordan MA; Wilson L
    Curr Opin Cell Biol; 1998 Feb; 10(1):123-30. PubMed ID: 9484604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy.
    Wu Q; Lin WD; Liao GQ; Zhang LG; Wen SQ; Lin JY
    World J Gastroenterol; 2015 Jan; 21(3):854-61. PubMed ID: 25624718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and high-content analysis: two innovative technologies for dissecting the relationship between epithelial-mesenchymal transition-related morphological and structural alterations and cell mechanical properties.
    Buckley ST; Davies AM; Ehrhardt C
    Methods Mol Biol; 2011; 784():197-208. PubMed ID: 21898222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of AEE788 and/or Celecoxib on colon cancer cell morphology using advanced microscopic techniques.
    Venkatesan P; Das S; Krishnan MM; Chakraborty C; Chaudhury K; Mandal M
    Micron; 2010 Apr; 41(3):247-56. PubMed ID: 19945288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.