These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 33233661)
1. Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Alfarhan M; Jafari E; Narayanan SP Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233661 [TBL] [Abstract][Full Text] [Related]
2. Pathological Role of Unsaturated Aldehyde Acrolein in Diabetic Retinopathy. Murata M; Noda K; Ishida S Front Immunol; 2020; 11():589531. PubMed ID: 33193419 [TBL] [Abstract][Full Text] [Related]
3. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction. Liu Z; Sun L; Zhu L; Jia X; Li X; Jia H; Wang Y; Weber P; Long J; Liu J J Neurochem; 2007 Dec; 103(6):2690-700. PubMed ID: 20938484 [TBL] [Abstract][Full Text] [Related]
4. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Narayanan SP; Shosha E; D Palani C Pharmacol Res; 2019 Sep; 147():104299. PubMed ID: 31207342 [TBL] [Abstract][Full Text] [Related]
5. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine. McDowell RE; Barabas P; Augustine J; Chevallier O; McCarron P; Chen M; McGeown JG; Curtis TM Diabetologia; 2018 Dec; 61(12):2654-2667. PubMed ID: 30112688 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanisms of diabetic retinopathy: potential therapeutic targets. Coucha M; Elshaer SL; Eldahshan WS; Mysona BA; El-Remessy AB Middle East Afr J Ophthalmol; 2015; 22(2):135-44. PubMed ID: 25949069 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanisms of acrolein toxicity: relevance to human disease. Moghe A; Ghare S; Lamoreau B; Mohammad M; Barve S; McClain C; Joshi-Barve S Toxicol Sci; 2015 Feb; 143(2):242-55. PubMed ID: 25628402 [TBL] [Abstract][Full Text] [Related]
8. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Dehdashtian E; Mehrzadi S; Yousefi B; Hosseinzadeh A; Reiter RJ; Safa M; Ghaznavi H; Naseripour M Life Sci; 2018 Jan; 193():20-33. PubMed ID: 29203148 [TBL] [Abstract][Full Text] [Related]
9. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids. Ola MS; Al-Dosari D; Alhomida AS Curr Pharm Des; 2018; 24(19):2180-2187. PubMed ID: 29766782 [TBL] [Abstract][Full Text] [Related]
10. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. Djordjevic B; Cvetkovic T; Stoimenov TJ; Despotovic M; Zivanovic S; Basic J; Veljkovic A; Velickov A; Kocic G; Pavlovic D; Sokolovic D Eur J Pharmacol; 2018 Aug; 833():290-297. PubMed ID: 29890158 [TBL] [Abstract][Full Text] [Related]
11. Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Huang J; Li X; Li M; Li J; Xiao W; Ma W; Chen X; Liang X; Tang S; Luo Y Curr Mol Med; 2013 Jul; 13(6):935-45. PubMed ID: 23745582 [TBL] [Abstract][Full Text] [Related]
12. Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina. Al-Dosari DI; Ahmed MM; Al-Rejaie SS; Alhomida AS; Ola MS Nutrients; 2017 Oct; 9(10):. PubMed ID: 29064407 [TBL] [Abstract][Full Text] [Related]
13. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Kang Q; Yang C Redox Biol; 2020 Oct; 37():101799. PubMed ID: 33248932 [TBL] [Abstract][Full Text] [Related]
14. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Li C; Miao X; Li F; Wang S; Liu Q; Wang Y; Sun J Oxid Med Cell Longev; 2017; 2017():9702820. PubMed ID: 28265339 [TBL] [Abstract][Full Text] [Related]
15. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source. Zhang J; Sturla S; Lacroix C; Schwab C mBio; 2018 Jan; 9(1):. PubMed ID: 29339426 [TBL] [Abstract][Full Text] [Related]
16. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Gao J; Tao L; Jiang Z Redox Rep; 2023 Dec; 28(1):2272386. PubMed ID: 38041593 [TBL] [Abstract][Full Text] [Related]
17. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Augustine J; Troendle EP; Barabas P; McAleese CA; Friedel T; Stitt AW; Curtis TM Front Endocrinol (Lausanne); 2020; 11():621938. PubMed ID: 33679605 [TBL] [Abstract][Full Text] [Related]
18. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. Hamann K; Shi R J Neurochem; 2009 Dec; 111(6):1348-56. PubMed ID: 19780896 [TBL] [Abstract][Full Text] [Related]
19. Nutraceuticals for the Treatment of Diabetic Retinopathy. Rossino MG; Casini G Nutrients; 2019 Apr; 11(4):. PubMed ID: 30987058 [TBL] [Abstract][Full Text] [Related]
20. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. Cecilia OM; José Alberto CG; José NP; Ernesto Germán CM; Ana Karen LC; Luis Miguel RP; Ricardo Raúl RR; Adolfo Daniel RC J Diabetes Res; 2019; 2019():8562408. PubMed ID: 31511825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]