BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 33233661)

  • 1. Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy.
    Alfarhan M; Jafari E; Narayanan SP
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathological Role of Unsaturated Aldehyde Acrolein in Diabetic Retinopathy.
    Murata M; Noda K; Ishida S
    Front Immunol; 2020; 11():589531. PubMed ID: 33193419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction.
    Liu Z; Sun L; Zhu L; Jia X; Li X; Jia H; Wang Y; Weber P; Long J; Liu J
    J Neurochem; 2007 Dec; 103(6):2690-700. PubMed ID: 20938484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy.
    Narayanan SP; Shosha E; D Palani C
    Pharmacol Res; 2019 Sep; 147():104299. PubMed ID: 31207342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine.
    McDowell RE; Barabas P; Augustine J; Chevallier O; McCarron P; Chen M; McGeown JG; Curtis TM
    Diabetologia; 2018 Dec; 61(12):2654-2667. PubMed ID: 30112688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of diabetic retinopathy: potential therapeutic targets.
    Coucha M; Elshaer SL; Eldahshan WS; Mysona BA; El-Remessy AB
    Middle East Afr J Ophthalmol; 2015; 22(2):135-44. PubMed ID: 25949069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of acrolein toxicity: relevance to human disease.
    Moghe A; Ghare S; Lamoreau B; Mohammad M; Barve S; McClain C; Joshi-Barve S
    Toxicol Sci; 2015 Feb; 143(2):242-55. PubMed ID: 25628402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.
    Dehdashtian E; Mehrzadi S; Yousefi B; Hosseinzadeh A; Reiter RJ; Safa M; Ghaznavi H; Naseripour M
    Life Sci; 2018 Jan; 193():20-33. PubMed ID: 29203148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids.
    Ola MS; Al-Dosari D; Alhomida AS
    Curr Pharm Des; 2018; 24(19):2180-2187. PubMed ID: 29766782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes.
    Djordjevic B; Cvetkovic T; Stoimenov TJ; Despotovic M; Zivanovic S; Basic J; Veljkovic A; Velickov A; Kocic G; Pavlovic D; Sokolovic D
    Eur J Pharmacol; 2018 Aug; 833():290-297. PubMed ID: 29890158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats.
    Huang J; Li X; Li M; Li J; Xiao W; Ma W; Chen X; Liang X; Tang S; Luo Y
    Curr Mol Med; 2013 Jul; 13(6):935-45. PubMed ID: 23745582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina.
    Al-Dosari DI; Ahmed MM; Al-Rejaie SS; Alhomida AS; Ola MS
    Nutrients; 2017 Oct; 9(10):. PubMed ID: 29064407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.
    Kang Q; Yang C
    Redox Biol; 2020 Oct; 37():101799. PubMed ID: 33248932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy.
    Li C; Miao X; Li F; Wang S; Liu Q; Wang Y; Sun J
    Oxid Med Cell Longev; 2017; 2017():9702820. PubMed ID: 28265339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source.
    Zhang J; Sturla S; Lacroix C; Schwab C
    mBio; 2018 Jan; 9(1):. PubMed ID: 29339426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology.
    Cecilia OM; José Alberto CG; José NP; Ernesto Germán CM; Ana Karen LC; Luis Miguel RP; Ricardo Raúl RR; Adolfo Daniel RC
    J Diabetes Res; 2019; 2019():8562408. PubMed ID: 31511825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies.
    Gao J; Tao L; Jiang Z
    Redox Rep; 2023 Dec; 28(1):2272386. PubMed ID: 38041593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy.
    Augustine J; Troendle EP; Barabas P; McAleese CA; Friedel T; Stitt AW; Curtis TM
    Front Endocrinol (Lausanne); 2020; 11():621938. PubMed ID: 33679605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury.
    Hamann K; Shi R
    J Neurochem; 2009 Dec; 111(6):1348-56. PubMed ID: 19780896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutraceuticals for the Treatment of Diabetic Retinopathy.
    Rossino MG; Casini G
    Nutrients; 2019 Apr; 11(4):. PubMed ID: 30987058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.