These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 3323450)
41. Molecular design of two sterol 14alpha-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole. Rupp B; Raub S; Marian C; Höltje HD J Comput Aided Mol Des; 2005 Mar; 19(3):149-63. PubMed ID: 16059669 [TBL] [Abstract][Full Text] [Related]
42. The antifungal activity of 2,2'-diamino-4,4'-dithiazole derivatives is due to the possible inhibition of lanosterol-14-alpha-demethylase. Scozzafava A; Nicolae A; Maior O; Briganti F; Supuran CT J Enzyme Inhib; 1998; 14(1):49-68. PubMed ID: 10520759 [TBL] [Abstract][Full Text] [Related]
43. Design and optimization of highly-selective fungal CYP51 inhibitors. Hoekstra WJ; Garvey EP; Moore WR; Rafferty SW; Yates CM; Schotzinger RJ Bioorg Med Chem Lett; 2014 Aug; 24(15):3455-8. PubMed ID: 24948565 [TBL] [Abstract][Full Text] [Related]
44. Stereoselective interaction of an azole antifungal agent with its target, lanosterol 14 alpha-demethylase (cytochrome P-45014DM): a model study with stereoisomers of triadimenol and purified cytochrome P-45014DM from yeast. Yoshida Y; Aoyama Y Chirality; 1990; 2(1):10-5. PubMed ID: 2205265 [TBL] [Abstract][Full Text] [Related]
45. Resistance to imidazoles and triazoles in Saccharomyces cerevisiae as a new dominant marker. Doignon F; Aigle M; Ribereau-Gayon P Plasmid; 1993 Nov; 30(3):224-33. PubMed ID: 8302930 [TBL] [Abstract][Full Text] [Related]
46. Inhibition of sterol C14 demethylation by imidazole-containing antifungals. Pye GW; Marriott MS Sabouraudia; 1982 Dec; 20(4):325-9. PubMed ID: 6760419 [No Abstract] [Full Text] [Related]
47. Sterol 14 alpha-demethylase and its inhibition: structural considerations on interaction of azole antifungal agents with lanosterol 14 alpha-demethylase (P-450(14DM)) of yeast. Yoshida Y; Aoyama Y Biochem Soc Trans; 1991 Aug; 19(3):778-82. PubMed ID: 1783215 [No Abstract] [Full Text] [Related]
48. Effects of terconazole and other azole antifungal agents on the sterol and carbohydrate composition of Candida albicans. Pfaller MA; Riley J; Koerner T Diagn Microbiol Infect Dis; 1990; 13(1):31-5. PubMed ID: 2184984 [TBL] [Abstract][Full Text] [Related]
49. Trisomy of chromosome R confers resistance to triazoles in Candida albicans. Li X; Yang F; Li D; Zhou M; Wang X; Xu Q; Zhang Y; Yan L; Jiang Y Med Mycol; 2015 Apr; 53(3):302-9. PubMed ID: 25792759 [TBL] [Abstract][Full Text] [Related]
50. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent. Singh A; Paliwal SK; Sharma M; Mittal A; Sharma S; Sharma JP J Mol Graph Model; 2016 Jan; 63():1-7. PubMed ID: 26579619 [TBL] [Abstract][Full Text] [Related]
51. Purification, reconstitution, and inhibition of cytochrome P-450 sterol delta22-desaturase from the pathogenic fungus Candida glabrata. Lamb DC; Maspahy S; Kelly DE; Manning NJ; Geber A; Bennett JE; Kelly SL Antimicrob Agents Chemother; 1999 Jul; 43(7):1725-8. PubMed ID: 10390230 [TBL] [Abstract][Full Text] [Related]
52. Design and synthesis of potential inhibitors of the ergosterol biosynthesis as antifungal agents. Chung SK; Lee KW; Kang HI; Yamashita C; Kudo M; Yoshida Y Bioorg Med Chem; 2000 Oct; 8(10):2475-86. PubMed ID: 11058043 [TBL] [Abstract][Full Text] [Related]
53. Acetate-mediated growth inhibition in sterol 14alpha-demethylation-deficient cells of Candida albicans. Shimokawa O; Nakayama H Antimicrob Agents Chemother; 1999 Jan; 43(1):100-5. PubMed ID: 9869573 [TBL] [Abstract][Full Text] [Related]
54. Altered P450 activity associated with direct selection for fungal azole resistance. Joseph-Horne T; Hollomon D; Loeffler RS; Kelly SL FEBS Lett; 1995 Oct; 374(2):174-8. PubMed ID: 7589528 [TBL] [Abstract][Full Text] [Related]
55. Plant sterol 14 alpha-demethylase affinity for azole fungicides. Lamb DC; Cannieux M; Warrilow AG; Bak S; Kahn RA; Manning NJ; Kelly DE; Kelly SL Biochem Biophys Res Commun; 2001 Jun; 284(3):845-9. PubMed ID: 11396979 [TBL] [Abstract][Full Text] [Related]
56. Antifungal activities of novel non-azole molecules against S. cerevisiae and C. albicans. Tani N; Rahnasto-Rilla M; Wittekindt C; Salminen KA; Ritvanen A; Ollakka R; Koskiranta J; Raunio H; Juvonen RO Eur J Med Chem; 2012 Jan; 47(1):270-7. PubMed ID: 22100140 [TBL] [Abstract][Full Text] [Related]
57. Cytochrome P-450-dependent 14 alpha-demethylation of lanosterol in Candida albicans. Hitchcock CA; Brown SB; Evans EG; Adams DJ Biochem J; 1989 Jun; 260(2):549-56. PubMed ID: 2669735 [TBL] [Abstract][Full Text] [Related]
58. Lepidine B & E as New Target Inhibitors from Lepidium Sativum Seeds Against Four Enzymes of the Pathogen Candida albicans: In Vitro and In Silico Studies. Gacemi S; Benarous K; Imperial S; Yousfi M Endocr Metab Immune Disord Drug Targets; 2020; 20(1):127-138. PubMed ID: 30987578 [TBL] [Abstract][Full Text] [Related]
59. Mechanism of action of efinaconazole, a novel triazole antifungal agent. Tatsumi Y; Nagashima M; Shibanushi T; Iwata A; Kangawa Y; Inui F; Siu WJ; Pillai R; Nishiyama Y Antimicrob Agents Chemother; 2013 May; 57(5):2405-9. PubMed ID: 23459486 [TBL] [Abstract][Full Text] [Related]
60. Mode of action of anti-Candida drugs: focus on terconazole and other ergosterol biosynthesis inhibitors. Vanden Bossche H; Marichal P Am J Obstet Gynecol; 1991 Oct; 165(4 Pt 2):1193-9. PubMed ID: 1951574 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]