These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33235190)
1. Mechanically interlocked 3D multi-material micromachines. Alcântara CCJ; Landers FC; Kim S; De Marco C; Ahmed D; Nelson BJ; Pané S Nat Commun; 2020 Nov; 11(1):5957. PubMed ID: 33235190 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional printing of freeform helical microstructures: a review. Farahani RD; Chizari K; Therriault D Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812 [TBL] [Abstract][Full Text] [Related]
3. Mechanically Interlocked Aerogels with Densely Rotaxanated Backbones. Zhang X; Liu K; Zhao J; Zhang Z; Luo Z; Guo Y; Zhang H; Wang Y; Bai R; Zhao D; Yang X; Liu Y; Yan X J Am Chem Soc; 2022 Jun; 144(25):11434-11443. PubMed ID: 35696720 [TBL] [Abstract][Full Text] [Related]
5. High-aspect-ratio three-dimensional polymer and metallic microstructure microfabrication using two-photon polymerization. Vargas E; Huang C; Yan Z; White H; Zou J; Han A Biomed Microdevices; 2023 Jul; 25(3):28. PubMed ID: 37515728 [TBL] [Abstract][Full Text] [Related]
6. On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Landers FC; Gantenbein V; Hertle L; Veciana A; Llacer-Wintle J; Chen XZ; Ye H; Franco C; Puigmartí-Luis J; Kim M; Nelson BJ; Pané S Adv Mater; 2024 May; 36(18):e2310084. PubMed ID: 38101447 [TBL] [Abstract][Full Text] [Related]
7. Mechanically interlocked polymers based on rotaxanes. Chen L; Sheng X; Li G; Huang F Chem Soc Rev; 2022 Aug; 51(16):7046-7065. PubMed ID: 35852571 [TBL] [Abstract][Full Text] [Related]
8. Hybrid Laser Printing of 3D, Multiscale, Multimaterial Hydrogel Structures. Kunwar P; Xiong Z; Zhu Y; Li H; Filip A; Soman P Adv Opt Mater; 2019; 7(21):. PubMed ID: 33688458 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional Aerographite-GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applications. Schuchardt A; Braniste T; Mishra YK; Deng M; Mecklenburg M; Stevens-Kalceff MA; Raevschi S; Schulte K; Kienle L; Adelung R; Tiginyanu I Sci Rep; 2015 Mar; 5():8839. PubMed ID: 25744694 [TBL] [Abstract][Full Text] [Related]
10. 4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. Zhang Y; Wang Q; Yi S; Lin Z; Wang C; Chen Z; Jiang L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4174-4184. PubMed ID: 33398983 [TBL] [Abstract][Full Text] [Related]
11. Simulation assisted design for microneedle manufacturing: Computational modeling of two-photon templated electrodeposition. Aksit A; Lalwani AK; Kysar JW; West AC J Manuf Process; 2021 Jun; 66():211-219. PubMed ID: 34012359 [TBL] [Abstract][Full Text] [Related]
12. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured Vaupel S; Mau R; Kara S; Seitz H; Kragl U; Meyer J J Mater Chem B; 2023 Jul; 11(28):6547-6559. PubMed ID: 37325953 [TBL] [Abstract][Full Text] [Related]
13. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication. Lyu X; Zheng Z; Shiva A; Han M; Dayan CB; Zhang M; Sitti M Nat Commun; 2024 Aug; 15(1):6693. PubMed ID: 39107326 [TBL] [Abstract][Full Text] [Related]
14. Multimaterial 3D Printing for Microrobotic Mechanisms. Soreni-Harari M; St Pierre R; McCue C; Moreno K; Bergbreiter S Soft Robot; 2020 Feb; 7(1):59-67. PubMed ID: 31460833 [TBL] [Abstract][Full Text] [Related]
15. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Zeeshan MA; Grisch R; Pellicer E; Sivaraman KM; Peyer KE; Sort J; Özkale B; Sakar MS; Nelson BJ; Pané S Small; 2014 Apr; 10(7):1284-8. PubMed ID: 24339330 [TBL] [Abstract][Full Text] [Related]
16. Micromolding of Thermoplastic Polymers for Direct Fabrication of Discrete, Multilayered Microparticles. Sadeghi I; Lu X; Sarmadi M; Langer R; Jaklenec A Small Methods; 2022 Sep; 6(9):e2200232. PubMed ID: 35764872 [TBL] [Abstract][Full Text] [Related]
17. Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Wang X; Guo X; Ye J; Zheng N; Kohli P; Choi D; Zhang Y; Xie Z; Zhang Q; Luan H; Nan K; Kim BH; Xu Y; Shan X; Bai W; Sun R; Wang Z; Jang H; Zhang F; Ma Y; Xu Z; Feng X; Xie T; Huang Y; Zhang Y; Rogers JA Adv Mater; 2019 Jan; 31(2):e1805615. PubMed ID: 30370605 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures. Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089 [TBL] [Abstract][Full Text] [Related]
19. Synthetic strategies towards mechanically interlocked oligomers and polymers. Hoyas Pérez N; Lewis JEM Org Biomol Chem; 2020 Sep; 18(35):6757-6780. PubMed ID: 32840554 [TBL] [Abstract][Full Text] [Related]
20. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production. Behroodi E; Latifi H; Bagheri Z; Ermis E; Roshani S; Salehi Moghaddam M Sci Rep; 2020 Dec; 10(1):22171. PubMed ID: 33335148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]