These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Targeted Base Editing with CRISPR-Deaminase in Tomato. Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic Characterization of High Carotenoid Tomato Mutants Generated by the Target-AID Base-Editing Technology. Hunziker J; Nishida K; Kondo A; Ariizumi T; Ezura H Front Plant Sci; 2022; 13():848560. PubMed ID: 35874006 [TBL] [Abstract][Full Text] [Related]
4. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401 [TBL] [Abstract][Full Text] [Related]
5. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight. Kawaguchi K; Takei-Hoshi R; Yoshikawa I; Nishida K; Kobayashi M; Kusano M; Lu Y; Ariizumi T; Ezura H; Otagaki S; Matsumoto S; Shiratake K Sci Rep; 2021 Nov; 11(1):21534. PubMed ID: 34728724 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9 editing of carotenoid genes in tomato. D'Ambrosio C; Stigliani AL; Giorio G Transgenic Res; 2018 Aug; 27(4):367-378. PubMed ID: 29797189 [TBL] [Abstract][Full Text] [Related]
7. Use of the Representative Base Editing Tool Target-AID to Introduce Pathogenic Mutations into Mice. Sasaguri H Methods Mol Biol; 2023; 2606():87-97. PubMed ID: 36592310 [TBL] [Abstract][Full Text] [Related]
8. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Sasaguri H; Nagata K; Sekiguchi M; Fujioka R; Matsuba Y; Hashimoto S; Sato K; Kurup D; Yokota T; Saido TC Nat Commun; 2018 Jul; 9(1):2892. PubMed ID: 30042426 [TBL] [Abstract][Full Text] [Related]
9. Efficient base editing in tomato using a highly expressed transient system. Yuan S; Kawasaki S; Abdellatif IMY; Nishida K; Kondo A; Ariizumi T; Ezura H; Miura K Plant Cell Rep; 2021 Apr; 40(4):667-676. PubMed ID: 33550455 [TBL] [Abstract][Full Text] [Related]
10. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Shimatani Z; Fujikura U; Ishii H; Matsui Y; Suzuki M; Ueke Y; Taoka KI; Terada R; Nishida K; Kondo A Plant Physiol Biochem; 2018 Oct; 131():78-83. PubMed ID: 29778643 [TBL] [Abstract][Full Text] [Related]
11. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
12. Targeted editing of tomato carotenoid isomerase reveals the role of 5' UTR region in gene expression regulation. Lakshmi Jayaraj K; Thulasidharan N; Antony A; John M; Augustine R; Chakravartty N; Sukumaran S; Uma Maheswari M; Abraham S; Thomas G; Lachagari VBR; Seshagiri S; Narayanan S; Kuriakose B Plant Cell Rep; 2021 Apr; 40(4):621-635. PubMed ID: 33449143 [TBL] [Abstract][Full Text] [Related]
13. Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. Sretenovic S; Green Y; Wu Y; Cheng Y; Zhang T; Van Eck J; Qi Y Plant Physiol; 2023 Aug; 193(1):291-303. PubMed ID: 37315207 [TBL] [Abstract][Full Text] [Related]
14. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Dahan-Meir T; Filler-Hayut S; Melamed-Bessudo C; Bocobza S; Czosnek H; Aharoni A; Levy AA Plant J; 2018 Jul; 95(1):5-16. PubMed ID: 29668111 [TBL] [Abstract][Full Text] [Related]
15. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Tomlinson L; Yang Y; Emenecker R; Smoker M; Taylor J; Perkins S; Smith J; MacLean D; Olszewski NE; Jones JDG Plant Biotechnol J; 2019 Jan; 17(1):132-140. PubMed ID: 29797460 [TBL] [Abstract][Full Text] [Related]
16. New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing. Malabarba J; Chevreau E; Dousset N; Veillet F; Moizan J; Vergne E Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396822 [TBL] [Abstract][Full Text] [Related]
17. Expanding C-T base editing toolkit with diversified cytidine deaminases. Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578 [TBL] [Abstract][Full Text] [Related]
18. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. Xiong C; Luo D; Lin A; Zhang C; Shan L; He P; Li B; Zhang Q; Hua B; Yuan Z; Li H; Zhang J; Yang C; Lu Y; Ye Z; Wang T New Phytol; 2019 Jan; 221(1):279-294. PubMed ID: 30101463 [TBL] [Abstract][Full Text] [Related]
19. Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Hsu CT; Cheng YJ; Yuan YH; Hung WF; Cheng QW; Wu FH; Lee LY; Gelvin SB; Lin CS Plant Mol Biol; 2019 Nov; 101(4-5):355-371. PubMed ID: 31401729 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Bari VK; Nassar JA; Aly R Sci Rep; 2021 Feb; 11(1):3905. PubMed ID: 33594101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]