These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33235552)

  • 1. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cellular Model of Shear-Induced Hemolysis.
    Sohrabi S; Liu Y
    Artif Organs; 2017 Sep; 41(9):E80-E91. PubMed ID: 28044355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices.
    Toninato R; Fadda G; Susin FM
    Artif Organs; 2018 Jan; 42(1):58-67. PubMed ID: 28722138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study on drug delivery
    Nikfar M; Razizadeh M; Paul R; Muzykantov V; Liu Y
    Nanoscale; 2021 Oct; 13(41):17359-17372. PubMed ID: 34590654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Human Erythrocyte's Threshold Free Energy for Hemolysis and Damage from Coupling Effect of Shear and Impact Based on Immersed Boundary-Lattice Boltzmann Method.
    Yun Z; Xiang C; Wang L
    Appl Bionics Biomech; 2020; 2020():8874247. PubMed ID: 33204305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells.
    Karandeniya DMW; Holmes DW; Sauret E; Gu YT
    Biomech Model Mechanobiol; 2022 Jun; 21(3):899-917. PubMed ID: 35412191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell tolerance to shear stress above and below the subhemolytic threshold.
    Horobin JT; Sabapathy S; Simmonds MJ
    Biomech Model Mechanobiol; 2020 Jun; 19(3):851-860. PubMed ID: 31720887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach for semiempirical modeling of mechanical blood trauma.
    Poorkhalil A; Amoabediny G; Tabesh H; Behbahani M; Mottaghy K
    Int J Artif Organs; 2016 Jun; 39(4):171-7. PubMed ID: 27034321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.