These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33236257)
1. Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes. Alam K; Maity A; Sinha SK; Rizopoulos D; Sattar A Lifetime Data Anal; 2021 Jan; 27(1):64-90. PubMed ID: 33236257 [TBL] [Abstract][Full Text] [Related]
2. Joint modeling of longitudinal and survival data with a covariate subject to a limit of detection. Sattar A; Sinha SK Stat Methods Med Res; 2019 Feb; 28(2):486-502. PubMed ID: 28956504 [TBL] [Abstract][Full Text] [Related]
3. Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates. Tapsoba Jde D; Lee SM; Wang CY Stat Med; 2011 Feb; 30(3):232-49. PubMed ID: 21213341 [TBL] [Abstract][Full Text] [Related]
4. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Li N; Elashoff RM; Li G; Saver J Stat Med; 2010 Feb; 29(5):546-57. PubMed ID: 19943331 [TBL] [Abstract][Full Text] [Related]
5. Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data. Deslandes E; Chevret S BMC Med Res Methodol; 2010 Jul; 10():69. PubMed ID: 20670425 [TBL] [Abstract][Full Text] [Related]
6. Joint longitudinal and survival-cure models in tumour xenograft experiments. Pan J; Bao Y; Dai H; Fang HB Stat Med; 2014 Aug; 33(18):3229-40. PubMed ID: 24753021 [TBL] [Abstract][Full Text] [Related]
7. Inferences for joint modelling of repeated ordinal scores and time to event data. Chakraborty A; Das K Comput Math Methods Med; 2010 Sep; 11(3):281-95. PubMed ID: 20721765 [TBL] [Abstract][Full Text] [Related]
8. Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model. Chakraborty A Stat Methods Med Res; 2016 Dec; 25(6):2714-2732. PubMed ID: 24770852 [TBL] [Abstract][Full Text] [Related]
9. Dynamic frailty models based on compound birth-death processes. Putter H; van Houwelingen HC Biostatistics; 2015 Jul; 16(3):550-64. PubMed ID: 25681608 [TBL] [Abstract][Full Text] [Related]
10. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Huang X; Li G; Elashoff RM; Pan J Lifetime Data Anal; 2011 Jan; 17(1):80-100. PubMed ID: 20549344 [TBL] [Abstract][Full Text] [Related]
11. Robust analysis in joint models: an application to a study on muscular dystrophy. Das K; Chakraborty A Stat Med; 2012 Dec; 31(29):4049-60. PubMed ID: 22815236 [TBL] [Abstract][Full Text] [Related]
12. Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. Zhang H; Huang Y Lifetime Data Anal; 2020 Apr; 26(2):339-368. PubMed ID: 31140028 [TBL] [Abstract][Full Text] [Related]
13. Correlated probit analysis of repeatedly measured ordinal and continuous outcomes with application to the Health and Retirement Study. Grigorova D; Gueorguieva R Stat Med; 2016 Oct; 35(23):4202-25. PubMed ID: 27222058 [TBL] [Abstract][Full Text] [Related]
14. Approximate nonparametric corrected-score method for joint modeling of survival and longitudinal data measured with error. Tapsoba JD; Lee SM; Wang CY Biom J; 2011 Jul; 53(4):557-77. PubMed ID: 21717494 [TBL] [Abstract][Full Text] [Related]
15. Improving efficiency using the Rao-Blackwell theorem in corrected and conditional score estimation methods for joint models. Huang YH; Hwang WH; Chen FY Biometrics; 2016 Dec; 72(4):1136-1144. PubMed ID: 26953722 [TBL] [Abstract][Full Text] [Related]
16. Joint modelling for organ transplantation outcomes for patients with diabetes and the end-stage renal disease. Dong JJ; Wang S; Wang L; Gill J; Cao J Stat Methods Med Res; 2019 Sep; 28(9):2724-2737. PubMed ID: 30022710 [TBL] [Abstract][Full Text] [Related]
17. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Lin H; McCulloch CE; Mayne ST Stat Med; 2002 Aug; 21(16):2369-82. PubMed ID: 12210621 [TBL] [Abstract][Full Text] [Related]
18. A Parametric Survival Model When a Covariate is Subject to Left-Censoring. Sattar A; Sinha SK; Morris NJ J Biom Biostat; 2012; Suppl 3(2):. PubMed ID: 24319625 [TBL] [Abstract][Full Text] [Related]
19. Mixed models approaches for joint modeling of different types of responses. Ivanova A; Molenberghs G; Verbeke G J Biopharm Stat; 2016; 26(4):601-18. PubMed ID: 26098411 [TBL] [Abstract][Full Text] [Related]
20. A flexible B-spline model for multiple longitudinal biomarkers and survival. Brown ER; Ibrahim JG; DeGruttola V Biometrics; 2005 Mar; 61(1):64-73. PubMed ID: 15737079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]