These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33236297)

  • 1. Exploring the temporal dynamics of inhibition of return using steady-state visual evoked potentials.
    Lim A; Janssen SMJ; Satel J
    Cogn Affect Behav Neurosci; 2020 Dec; 20(6):1349-1364. PubMed ID: 33236297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Time Course of Inhibition of Return: Evidence from Steady-State Visual Evoked Potentials.
    Li AS; Zhang GL; Miao CG; Wang S; Zhang M; Zhang Y
    Front Psychol; 2017; 8():1562. PubMed ID: 28955277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccadic suppression measured by steady-state visual evoked potentials.
    Chen J; Valsecchi M; Gegenfurtner KR
    J Neurophysiol; 2019 Jul; 122(1):251-258. PubMed ID: 30943105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature-based Attentional Amplitude Modulations of the Steady-state Visual Evoked Potentials Reflect Blood Oxygen Level Dependent Changes in Feature-sensitive Visual Areas.
    Boylan MR; Panitz C; Tebbe AL; Vieweg P; Forschack N; Müller MM; Keil A
    J Cogn Neurosci; 2023 Sep; 35(9):1493-1507. PubMed ID: 37432748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct patterns of spatial attentional modulation of steady-state visual evoked magnetic fields (SSVEFs) in subdivisions of the human early visual cortex.
    Moratti S; Gundlach C; de Echegaray J; Müller MM
    Psychophysiology; 2024 Feb; 61(2):e14452. PubMed ID: 37787386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory adaptation and inhibition of return: dissociating multiple inhibitory cueing effects.
    Lim A; Eng V; Janssen SMJ; Satel J
    Exp Brain Res; 2018 May; 236(5):1369-1382. PubMed ID: 29520444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal dynamics of visual attention measured with event-related potentials.
    Kashiwase Y; Matsumiya K; Kuriki I; Shioiri S
    PLoS One; 2013; 8(8):e70922. PubMed ID: 23976966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.
    Walter S; Quigley C; Mueller MM
    J Cogn Neurosci; 2014 May; 26(5):938-54. PubMed ID: 24345166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The execution of saccadic eye movements suppresses visual processing of both color and luminance in the early visual cortex of humans.
    Zhang Y; Valsecchi M; Gegenfurtner KR; Chen J
    J Neurophysiol; 2024 Jun; 131(6):1156-1167. PubMed ID: 38690998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state visual evoked potentials differentiate between internally and externally directed attention.
    Kritzman L; Eidelman-Rothman M; Keil A; Freche D; Sheppes G; Levit-Binnun N
    Neuroimage; 2022 Jul; 254():119133. PubMed ID: 35339684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.
    Zhang D; Hong B; Gao S; Röder B
    Exp Brain Res; 2017 May; 235(5):1575-1591. PubMed ID: 28258437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No evidence for an independent retinotopic reference frame for inhibition of return.
    Malevich T; Rybina E; Ivtushok E; Ardasheva L; MacInnes WJ
    Acta Psychol (Amst); 2020 Jul; 208():103107. PubMed ID: 32562893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical asymmetries and inhibition of return: effects of spatial and non-spatial cueing on behavior and visual ERPs.
    Gutiérrez-Domínguez FJ; Pazo-Álvarez P; Doallo S; Fuentes LJ; Lorenzo-López L; Amenedo E
    Int J Psychophysiol; 2014 Feb; 91(2):121-31. PubMed ID: 24342058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional modulation of neural responses to illusory shapes: Evidence from steady-state and evoked visual potentials.
    Wittenhagen L; Mattingley JB
    Neuropsychologia; 2019 Mar; 125():70-80. PubMed ID: 30711611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sustained selective attention on steady-state visual evoked potentials.
    Mahajan Y; Ching A; Watson T; Kim J; Davis C
    Exp Brain Res; 2022 Jan; 240(1):249-261. PubMed ID: 34727219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm.
    Tian Y; Klein RM; Satel J; Xu P; Yao D
    Brain Topogr; 2011 Jun; 24(2):164-82. PubMed ID: 21365310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable spatial and temporal effects of inhibition of return.
    Wang Z; Theeuwes J
    PLoS One; 2012; 7(8):e44290. PubMed ID: 22952949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.
    Müller MM; Trautmann M; Keitel C
    J Cogn Neurosci; 2016 Apr; 28(4):643-55. PubMed ID: 26696296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.