These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33236297)

  • 21. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task.
    Wittenhagen L; Mattingley JB
    Cortex; 2019 Aug; 117():217-227. PubMed ID: 30999213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of return in saccadic eye movements.
    Ro T; Pratt J; Rafal RD
    Exp Brain Res; 2000 Jan; 130(2):264-8. PubMed ID: 10672481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The gap effect reduces both manual and saccadic inhibition of return (IOR).
    Michalczyk Ł; Bielas J
    Exp Brain Res; 2019 Jul; 237(7):1643-1653. PubMed ID: 30953082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The time course of cortical facilitation during cued shifts of spatial attention.
    Müller MM; Teder-Sälejärvi W; Hillyard SA
    Nat Neurosci; 1998 Nov; 1(7):631-4. PubMed ID: 10196572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention.
    Mora-Cortes A; Ridderinkhof KR; Cohen MX
    Psychophysiology; 2018 May; 55(5):e13029. PubMed ID: 29119621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological evidence of an attentional bias in crossmodal inhibition of return.
    Pierce AM; McDonald JJ; Green JJ
    Neuropsychologia; 2018 Jun; 114():11-18. PubMed ID: 29630915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemifield Crossings during Multiple Object Tracking Affect Task Performance and Steady-State Visual Evoked Potentials.
    Minami T; Shinkai T; Nakauchi S
    Neuroscience; 2019 Jun; 409():162-168. PubMed ID: 31034975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow biasing of processing resources in early visual cortex is preceded by emotional cue extraction in emotion-attention competition.
    Schönwald LI; Müller MM
    Hum Brain Mapp; 2014 Apr; 35(4):1477-90. PubMed ID: 23450516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disentangling perceptual and motor components in inhibition of return.
    Zhou B
    Cogn Process; 2008 Aug; 9(3):175-87. PubMed ID: 18327623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attentional bias to affective faces and complex IAPS images in early visual cortex follows emotional cue extraction.
    Bekhtereva V; Craddock M; Müller MM
    Neuroimage; 2015 May; 112():254-266. PubMed ID: 25818682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations.
    Vissers ME; Gulbinaite R; van den Bos T; Slagter HA
    Sci Rep; 2017 Jun; 7(1):4061. PubMed ID: 28642613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of return in manual and saccadic response systems.
    Briand KA; Larrison AL; Sereno AB
    Percept Psychophys; 2000 Nov; 62(8):1512-24. PubMed ID: 11140175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady-state visual evoked potentials in children with neurofibromatosis type 1: associations with behavioral rating scales and impact of psychostimulant medication.
    Lalancette E; Charlebois-Poirier AR; Agbogba K; Knoth IS; Jones EJH; Mason L; Perreault S; Lippé S
    J Neurodev Disord; 2022 Jul; 14(1):42. PubMed ID: 35869419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using frequency tagging to quantify attentional deployment in a visual divided attention task.
    Toffanin P; de Jong R; Johnson A; Martens S
    Int J Psychophysiol; 2009 Jun; 72(3):289-98. PubMed ID: 19452603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In search of a reliable electrophysiological marker of oculomotor inhibition of return.
    Satel J; Hilchey MD; Wang Z; Reiss CS; Klein RM
    Psychophysiology; 2014 Oct; 51(10):1037-45. PubMed ID: 24976355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Just passing through? Inhibition of return in saccadic sequences.
    MacInnes WJ; Krüger HM; Hunt AR
    Q J Exp Psychol (Hove); 2015; 68(2):402-16. PubMed ID: 25219515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural signature of extracting emotional content from rapid visual streams at multiple presentation rates: A cross-laboratory study.
    Bekhtereva V; Pritschmann R; Keil A; Müller MM
    Psychophysiology; 2018 Dec; 55(12):e13222. PubMed ID: 30112759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The steady-state visual evoked potential (SSVEP) reflects the activation of cortical object representations: evidence from semantic stimulus repetition.
    Radtke EL; Martens U; Gruber T
    Exp Brain Res; 2021 Feb; 239(2):545-555. PubMed ID: 33315126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.