BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 33236511)

  • 1. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer.
    Stephen ZR; Zhang M
    Adv Healthc Mater; 2021 Jan; 10(2):e2001415. PubMed ID: 33236511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial immunotherapy and nanoparticle mediated hyperthermia.
    Moy AJ; Tunnell JW
    Adv Drug Deliv Rev; 2017 May; 114():175-183. PubMed ID: 28625829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles.
    Yu Q; Tang X; Zhao W; Qiu Y; He J; Wan D; Li J; Wang X; He X; Liu Y; Li M; Zhang Z; He Q
    Acta Biomater; 2021 Oct; 133():244-256. PubMed ID: 34000465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.
    Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X
    Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using nanoparticles for
    Gorbet MJ; Singh A; Mao C; Fiering S; Ranjan A
    Int J Hyperthermia; 2020 Dec; 37(3):18-33. PubMed ID: 33426995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplifying cancer treatment: advances in tumor immunotherapy and nanoparticle-based hyperthermia.
    Zhang Y; Li Z; Huang Y; Zou B; Xu Y
    Front Immunol; 2023; 14():1258786. PubMed ID: 37869003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering magnetic nano-manipulators for boosting cancer immunotherapy.
    Yan B; Wang S; Liu C; Wen N; Li H; Zhang Y; Wang H; Xi Z; Lv Y; Fan H; Liu X
    J Nanobiotechnology; 2022 Dec; 20(1):547. PubMed ID: 36587223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer.
    Liu H; Xu C; Meng M; Li S; Sheng S; Zhang S; Ni W; Tian H; Wang Q
    Acta Biomater; 2022 May; 144():132-141. PubMed ID: 35307591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy.
    Chang M; Hou Z; Wang M; Li C; Lin J
    Adv Mater; 2021 Jan; 33(4):e2004788. PubMed ID: 33289219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination.
    Chen PM; Pan WY; Wu CY; Yeh CY; Korupalli C; Luo PK; Chou CJ; Chia WT; Sung HW
    Biomaterials; 2020 Feb; 230():119629. PubMed ID: 31767446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia treatment advances for brain tumors.
    Skandalakis GP; Rivera DR; Rizea CD; Bouras A; Jesu Raj JG; Bozec D; Hadjipanayis CG
    Int J Hyperthermia; 2020 Jul; 37(2):3-19. PubMed ID: 32672123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing.
    Wang R; He Z; Cai P; Zhao Y; Gao L; Yang W; Zhao Y; Gao X; Gao F
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13964-13972. PubMed ID: 30912920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black porous silicon as a photothermal agent and immunoadjuvant for efficient antitumor immunotherapy.
    Xu W; Pang C; Song C; Qian J; Feola S; Cerullo V; Fan L; Yu H; Lehto VP
    Acta Biomater; 2022 Oct; 152():473-483. PubMed ID: 36087872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles-mediated photothermal therapy and immunotherapy.
    Liu Y; Crawford BM; Vo-Dinh T
    Immunotherapy; 2018 Sep; 10(13):1175-1188. PubMed ID: 30236026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor.
    Aloss K; Hamar P
    Biochim Biophys Acta Rev Cancer; 2024 Jul; 1879(4):189109. PubMed ID: 38750699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy.
    Guo Y; Ran Y; Wang Z; Cheng J; Cao Y; Yang C; Liu F; Ran H
    Biomaterials; 2019 Oct; 219():119370. PubMed ID: 31357006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in nano-drug delivery systems for synergistic antitumor immunotherapy.
    Zhao B; Li X; Kong Y; Wang W; Wen T; Zhang Y; Deng Z; Chen Y; Zheng X
    Front Bioeng Biotechnol; 2022; 10():1010724. PubMed ID: 36159668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy.
    Wang S; Sun Z; Hou Y
    Adv Healthc Mater; 2021 Mar; 10(5):e2000845. PubMed ID: 32790039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal therapies to improve immune checkpoint blockade for cancer.
    Balakrishnan PB; Sweeney EE; Ramanujam AS; Fernandes R
    Int J Hyperthermia; 2020 Dec; 37(3):34-49. PubMed ID: 33426992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthermia combined with immune checkpoint inhibitor therapy: Synergistic sensitization and clinical outcomes.
    Liu P; Ye M; Wu Y; Wu L; Lan K; Wu Z
    Cancer Med; 2023 Feb; 12(3):3201-3221. PubMed ID: 35908281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.