These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33236737)
1. Complete equations of state for PETN and its products from atomistic simulations. Sergeev OV; Mukhanov AE; Murzov SA; Yanilkin AV Phys Chem Chem Phys; 2020 Dec; 22(47):27572-27580. PubMed ID: 33236737 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Chemical Reaction Process after Pentaerythritol Tetranitrate Hot Spot Ignition. Zhang Y; Li Q; He Y ACS Omega; 2020 Nov; 5(45):28984-28991. PubMed ID: 33225129 [TBL] [Abstract][Full Text] [Related]
3. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics. Guo D; Zybin SV; An Q; Goddard WA; Huang F Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211 [TBL] [Abstract][Full Text] [Related]
4. First principles reactive simulation for equation of state prediction. Jadrich RB; Ticknor C; Leiding JA J Chem Phys; 2021 Jun; 154(24):244307. PubMed ID: 34241343 [TBL] [Abstract][Full Text] [Related]
5. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity. Zhou T; Liu L; Goddard WA; Zybin SV; Huang F Phys Chem Chem Phys; 2014 Nov; 16(43):23779-91. PubMed ID: 25272955 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics research on effect of doping defects on properties of PETN. Qi CB; Wang T; Miao S; Wang YL; Hang GY J Mol Model; 2019 Aug; 25(9):287. PubMed ID: 31471647 [TBL] [Abstract][Full Text] [Related]
7. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
8. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. Liu L; Liu Y; Zybin SV; Sun H; Goddard WA J Phys Chem A; 2011 Oct; 115(40):11016-22. PubMed ID: 21888351 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen Transfer in Energetic Materials from ReaxFF and DFT Calculations. Sergeev OV; Yanilkin AV J Phys Chem A; 2017 Apr; 121(16):3019-3027. PubMed ID: 28351144 [TBL] [Abstract][Full Text] [Related]
10. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
11. Free Energy Based Equation of State for Pentaerythritol Tetranitrate. Cawkwell MJ; Montgomery DS; Ramos KJ; Bolme CA J Phys Chem A; 2017 Jan; 121(1):238-243. PubMed ID: 27997195 [TBL] [Abstract][Full Text] [Related]
12. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations. Wen Y; Zhang C; Xue X; Long X Phys Chem Chem Phys; 2015 May; 17(18):12013-22. PubMed ID: 25872486 [TBL] [Abstract][Full Text] [Related]
13. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state. Bourasseau E; Dubois V; Desbiens N; Maillet JB J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275 [TBL] [Abstract][Full Text] [Related]
14. Hydrostatic Pressure Effects on Structural and Electronic Properties of ETN and PETN from First-Principles Calculations. Fedorov IA; Fedorova TP; Zhuravlev YN J Phys Chem A; 2016 May; 120(20):3710-7. PubMed ID: 27128718 [TBL] [Abstract][Full Text] [Related]
15. Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate. Budzien J; Thompson AP; Zybin SV J Phys Chem B; 2009 Oct; 113(40):13142-51. PubMed ID: 19791817 [TBL] [Abstract][Full Text] [Related]
16. Explanation of the colossal detonation sensitivity of silicon pentaerythritol tetranitrate (Si-PETN) explosive. Liu WG; Zybin SV; Dasgupta S; Klapötke TM; Goddard WA J Am Chem Soc; 2009 Jun; 131(22):7490-1. PubMed ID: 19489634 [TBL] [Abstract][Full Text] [Related]
17. Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate. Shan TR; Wixom RR; Mattsson AE; Thompson AP J Phys Chem B; 2013 Jan; 117(3):928-36. PubMed ID: 23272738 [TBL] [Abstract][Full Text] [Related]
18. Properties of Erythritol Tetranitrate from Molecular Dynamics Simulation. Cawkwell MJ; Manner VW J Phys Chem C Nanomater Interfaces; 2024 Apr; 128(13):5749-5758. PubMed ID: 38595775 [TBL] [Abstract][Full Text] [Related]
19. Chemical Evaluation and Performance Characterization of Pentaerythritol Tetranitrate (PETN) under Melt Conditions. Manner VW; Smilowitz L; Freye CE; Cleveland AH; Brown GW; Suvorova N; Tian H ACS Mater Au; 2022 Jul; 2(4):464-473. PubMed ID: 36855707 [TBL] [Abstract][Full Text] [Related]
20. Initial Response of Pentaerythritol Tetranitrate (PETN) under the Coupling Effect of Preheating, Shock and Defect via the Molecular Dynamics Simulations with the Multiscale Shock Technique Method. Zhang Y; Wang T; He Y Molecules; 2023 Mar; 28(7):. PubMed ID: 37049675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]