These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 33236920)
1. COVID-19 endocrinopathy with hindsight from SARS. Kothandaraman N; Rengaraj A; Xue B; Yew WS; Velan SS; Karnani N; Leow MKS Am J Physiol Endocrinol Metab; 2021 Jan; 320(1):E139-E150. PubMed ID: 33236920 [TBL] [Abstract][Full Text] [Related]
2. Possible long-term endocrine-metabolic complications in COVID-19: lesson from the SARS model. MongioƬ LM; Barbagallo F; Condorelli RA; Cannarella R; Aversa A; La Vignera S; Calogero AE Endocrine; 2020 Jun; 68(3):467-470. PubMed ID: 32488837 [TBL] [Abstract][Full Text] [Related]
3. Endocrine Significance of SARS-CoV-2's Reliance on ACE2. Lazartigues E; Qadir MMF; Mauvais-Jarvis F Endocrinology; 2020 Sep; 161(9):. PubMed ID: 32652001 [TBL] [Abstract][Full Text] [Related]
4. The emergence of Covid-19: evolution from endemic to pandemic. Ahsan H; Arif A; Ansari S; Khan FH J Immunoassay Immunochem; 2022 Jan; 43(1):22-32. PubMed ID: 34672900 [TBL] [Abstract][Full Text] [Related]
5. Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic-A comprehensive review. Piticchio T; Le Moli R; Tumino D; Frasca F J Endocrinol Invest; 2021 Aug; 44(8):1553-1570. PubMed ID: 33583003 [TBL] [Abstract][Full Text] [Related]
6. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Rossi GA; Sacco O; Mancino E; Cristiani L; Midulla F Infection; 2020 Oct; 48(5):665-669. PubMed ID: 32737833 [TBL] [Abstract][Full Text] [Related]
7. Insights into the possible impact of COVID-19 on the endocrine system. Abdel-Moneim A; Hosni A Arch Physiol Biochem; 2023 Dec; 129(4):998-1006. PubMed ID: 33653188 [TBL] [Abstract][Full Text] [Related]
8. Impact of COVID-19 on the Endocrine System: A Mini-review. Clarke SA; Abbara A; Dhillo WS Endocrinology; 2022 Jan; 163(1):. PubMed ID: 34543404 [TBL] [Abstract][Full Text] [Related]
9. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW; Xu YM; Lau ATY Rev Med Virol; 2020 Sep; 30(5):e2122. PubMed ID: 32602627 [TBL] [Abstract][Full Text] [Related]
10. Coronaviruses and Endocrine System: A Systematic Review on Evidence and Shadows. Parolin M; Parisotto M; Zanchetta F; Sartorato P; De Menis E Endocr Metab Immune Disord Drug Targets; 2021; 21(7):1242-1251. PubMed ID: 32888287 [TBL] [Abstract][Full Text] [Related]
11. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. Asrani P; Hasan GM; Sohal SS; Hassan MI OMICS; 2020 Nov; 24(11):634-644. PubMed ID: 32940573 [TBL] [Abstract][Full Text] [Related]
12. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Cantuti-Castelvetri L; Ojha R; Pedro LD; Djannatian M; Franz J; Kuivanen S; van der Meer F; Kallio K; Kaya T; Anastasina M; Smura T; Levanov L; Szirovicza L; Tobi A; Kallio-Kokko H; Ćsterlund P; Joensuu M; Meunier FA; Butcher SJ; Winkler MS; Mollenhauer B; Helenius A; Gokce O; Teesalu T; Hepojoki J; Vapalahti O; Stadelmann C; Balistreri G; Simons M Science; 2020 Nov; 370(6518):856-860. PubMed ID: 33082293 [TBL] [Abstract][Full Text] [Related]
13. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Pan F; Xiao X; Guo J; Song Y; Li H; Patel DP; Spivak AM; Alukal JP; Zhang X; Xiong C; Li PS; Hotaling JM Fertil Steril; 2020 Jun; 113(6):1135-1139. PubMed ID: 32482249 [TBL] [Abstract][Full Text] [Related]
14. The involvement of the central nervous system in patients with COVID-19. Saleki K; Banazadeh M; Saghazadeh A; Rezaei N Rev Neurosci; 2020 May; 31(4):453-456. PubMed ID: 32463395 [TBL] [Abstract][Full Text] [Related]
15. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Zhang XY; Huang HJ; Zhuang DL; Nasser MI; Yang MH; Zhu P; Zhao MY Infect Dis Poverty; 2020 Jul; 9(1):99. PubMed ID: 32690096 [TBL] [Abstract][Full Text] [Related]
16. Thyroid complications of SARS and coronavirus disease 2019 (COVID-19). Speer G; Somogyi P Endocr J; 2021 Feb; 68(2):129-136. PubMed ID: 33473054 [TBL] [Abstract][Full Text] [Related]
17. Human and novel coronavirus infections in children: a review. Rajapakse N; Dixit D Paediatr Int Child Health; 2021 Feb; 41(1):36-55. PubMed ID: 32584199 [TBL] [Abstract][Full Text] [Related]
18. Learning from our immunological history: What can SARS-CoV teach us about SARS-CoV-2? Henrickson SE Sci Immunol; 2020 Apr; 5(46):. PubMed ID: 32245885 [TBL] [Abstract][Full Text] [Related]
19. Emerging coronaviruses: first SARS, second MERS and third SARS-CoV-2: epidemiological updates of COVID-19. Halaji M; Farahani A; Ranjbar R; Heiat M; Dehkordi FS Infez Med; 2020 Jun; 28(suppl 1):6-17. PubMed ID: 32532933 [TBL] [Abstract][Full Text] [Related]
20. Receptor utilization of angiotensin-converting enzyme 2 (ACE2) indicates a narrower host range of SARS-CoV-2 than that of SARS-CoV. Wang Q; Qiu Y; Li JY; Liao CH; Zhou ZJ; Ge XY Transbound Emerg Dis; 2021 May; 68(3):1046-1053. PubMed ID: 32794346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]