These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33237076)
1. Tailoring the transfer characteristics and hysteresis in MoS Prasad P; Garg M; Chandni U Nanoscale; 2020 Dec; 12(46):23817-23823. PubMed ID: 33237076 [TBL] [Abstract][Full Text] [Related]
2. The intrinsic origin of hysteresis in MoS2 field effect transistors. Shu J; Wu G; Guo Y; Liu B; Wei X; Chen Q Nanoscale; 2016 Feb; 8(5):3049-56. PubMed ID: 26782750 [TBL] [Abstract][Full Text] [Related]
3. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS Lee C; Rathi S; Khan MA; Lim D; Kim Y; Yun SJ; Youn DH; Watanabe K; Taniguchi T; Kim GH Nanotechnology; 2018 Aug; 29(33):335202. PubMed ID: 29786609 [TBL] [Abstract][Full Text] [Related]
4. Electrically Tunable Room Temperature Hysteresis Crossover in Underlap MoS Jawa H; Varghese A; Lodha S ACS Appl Mater Interfaces; 2021 Feb; 13(7):9186-9194. PubMed ID: 33555851 [TBL] [Abstract][Full Text] [Related]
5. Thermally Assisted Nonvolatile Memory in Monolayer MoS He G; Ramamoorthy H; Kwan CP; Lee YH; Nathawat J; Somphonsane R; Matsunaga M; Higuchi A; Yamanaka T; Aoki N; Gong Y; Zhang X; Vajtai R; Ajayan PM; Bird JP Nano Lett; 2016 Oct; 16(10):6445-6451. PubMed ID: 27680095 [TBL] [Abstract][Full Text] [Related]
6. Reduction of Threshold Voltage Hysteresis of MoS Han KH; Kim GS; Park J; Kim SG; Park JH; Yu HY ACS Appl Mater Interfaces; 2019 Jun; 11(23):20949-20955. PubMed ID: 31117422 [TBL] [Abstract][Full Text] [Related]
7. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer. Qian Q; Li B; Hua M; Zhang Z; Lan F; Xu Y; Yan R; Chen KJ Sci Rep; 2016 Jun; 6():27676. PubMed ID: 27279454 [TBL] [Abstract][Full Text] [Related]
8. Gate Bias Stress Instability and Hysteresis Characteristics of InAs Nanowire Field-Effect Transistors. Lan C; Yip S; Kang X; Meng Y; Bu X; Ho JC ACS Appl Mater Interfaces; 2020 Dec; 12(50):56330-56337. PubMed ID: 33287538 [TBL] [Abstract][Full Text] [Related]
9. Effects of Charge Trapping at the MoS Huang X; Yao Y; Peng S; Zhang D; Shi J; Jin Z Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605183 [TBL] [Abstract][Full Text] [Related]
10. Environmental Effects on Hysteresis of Transfer Characteristics in Molybdenum Disulfide Field-Effect Transistors. Shimazu Y; Tashiro M; Sonobe S; Takahashi M Sci Rep; 2016 Jul; 6():30084. PubMed ID: 27435309 [TBL] [Abstract][Full Text] [Related]
11. Defects Induced Charge Trapping/Detrapping and Hysteresis Phenomenon in MoS Ma X; Liu YY; Zeng L; Chen J; Wang R; Wang LW; Wu Y; Jiang X ACS Appl Mater Interfaces; 2022 Jan; 14(1):2185-2193. PubMed ID: 34931795 [TBL] [Abstract][Full Text] [Related]
12. Optimizing Al-doped ZrO Song X; Xu J; Liu L; Deng Y; Lai PT; Tang WM Nanotechnology; 2020 Mar; 31(13):135206. PubMed ID: 31766028 [TBL] [Abstract][Full Text] [Related]
13. Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiO(x) van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed. Lee HS; Baik SS; Lee K; Min SW; Jeon PJ; Kim JS; Choi K; Choi HJ; Kim JH; Im S ACS Nano; 2015 Aug; 9(8):8312-20. PubMed ID: 26169189 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Characteristics of MoS Park HJ; Park CJ; Kim JY; Kim MS; Kim J; Joo J ACS Appl Mater Interfaces; 2018 Sep; 10(38):32556-32566. PubMed ID: 30183249 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS Sun Y; Xie D; Zhang X; Xu J; Li X; Li X; Dai R; Li X; Li P; Gao X; Zhu H Nanotechnology; 2017 Jan; 28(4):045204. PubMed ID: 27991447 [TBL] [Abstract][Full Text] [Related]
16. Effect of Dielectric Interface on the Performance of MoS Li X; Xiong X; Li T; Li S; Zhang Z; Wu Y ACS Appl Mater Interfaces; 2017 Dec; 9(51):44602-44608. PubMed ID: 29199423 [TBL] [Abstract][Full Text] [Related]
17. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504 [TBL] [Abstract][Full Text] [Related]
18. Damage-free mica/MoS Zou X; Xu J; Liu L; Wang H; Lai PT; Tang WM Nanotechnology; 2019 Aug; 30(34):345204. PubMed ID: 31067521 [TBL] [Abstract][Full Text] [Related]
19. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions. Xu H; Wu J; Chen Y; Zhang H; Zhang J Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025 [TBL] [Abstract][Full Text] [Related]