These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33237096)

  • 1. Theoretical study on reaction mechanism of phosphate-catalysed N-S acyl transfer of N-sulfanylethylanilide (SEAlide).
    Shigenaga A
    Org Biomol Chem; 2020 Dec; 18(47):9706-9711. PubMed ID: 33237096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry.
    Otaka A; Sato K; Shigenaga A
    Top Curr Chem; 2015; 363():33-56. PubMed ID: 25467538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study to gain fundamental insight into reaction mechanism of N-S acyl transfer of N-sulfanylethylanilide-based protein labeling reagent on protein surface.
    Shigenaga A; Kyan R
    J Pept Sci; 2023 Dec; 29(12):e3526. PubMed ID: 37257834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labelling of endogenous target protein via N-S acyl transfer-mediated activation of N-sulfanylethylanilide.
    Denda M; Morisaki T; Kohiki T; Yamamoto J; Sato K; Sagawa I; Inokuma T; Sato Y; Yamauchi A; Shigenaga A; Otaka A
    Org Biomol Chem; 2016 Jul; 14(26):6244-51. PubMed ID: 27264675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.
    Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A
    J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Anilide-Type Scaffold for the Thioester Precursor N-Sulfanylethylcoumarinyl Amide.
    Eto M; Naruse N; Morimoto K; Yamaoka K; Sato K; Tsuji K; Inokuma T; Shigenaga A; Otaka A
    Org Lett; 2016 Sep; 18(17):4416-9. PubMed ID: 27529363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resin-Bound Crypto-Thioester for Native Chemical Ligation.
    Naruse N; Ohkawachi K; Inokuma T; Shigenaga A; Otaka A
    Org Lett; 2018 Apr; 20(8):2449-2453. PubMed ID: 29629775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation.
    Kawakami T
    Top Curr Chem; 2015; 362():107-35. PubMed ID: 25370522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Synthesis of 162-Residue S-Monoglycosylated GM2-Activator Protein (GM2AP) Analogues that Allows Facile Access to a Protein Library.
    Nakamura T; Sato K; Naruse N; Kitakaze K; Inokuma T; Hirokawa T; Shigenaga A; Itoh K; Otaka A
    Chembiochem; 2016 Oct; 17(20):1986-1992. PubMed ID: 27428709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An N-sulfanylethylanilide-based traceable linker for enrichment and selective labelling of target proteins.
    Morisaki T; Denda M; Yamamoto J; Tsuji D; Inokuma T; Itoh K; Shigenaga A; Otaka A
    Chem Commun (Camb); 2016 May; 52(42):6911-3. PubMed ID: 27146590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-->S acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives.
    Tsuda S; Shigenaga A; Bando K; Otaka A
    Org Lett; 2009 Feb; 11(4):823-6. PubMed ID: 19161341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical synthesis of biologically active monoglycosylated GM2-activator protein analogue using N-sulfanylethylanilide peptide.
    Sato K; Shigenaga A; Kitakaze K; Sakamoto K; Tsuji D; Itoh K; Otaka A
    Angew Chem Int Ed Engl; 2013 Jul; 52(30):7855-9. PubMed ID: 23765733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.
    Chen SL; Liao RZ
    Chemphyschem; 2014 Aug; 15(11):2321-30. PubMed ID: 24683174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic synthesis of cyclic peptides using novel thioester surrogates.
    Hemu X; Taichi M; Qiu Y; Liu DX; Tam JP
    Biopolymers; 2013 Sep; 100(5):492-501. PubMed ID: 23893856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational mechanistic elucidation of the intramolecular aminoalkene hydroamination catalysed by iminoanilide alkaline-earth compounds.
    Tobisch S
    Chemistry; 2015 Apr; 21(18):6765-79. PubMed ID: 25801822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of the mechanism of amide bond formation via CS
    Jiang YY; Liu TT; Sun X; Xu ZY; Fan X; Zhu L; Bi S
    Org Biomol Chem; 2018 Aug; 16(32):5808-5815. PubMed ID: 30065988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.