These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33237535)
1. Immunophenotyping of Circulating Myeloid-Derived Suppressor Cells (MDSC) in the Peripheral Blood of Cancer Patients. Bruderek K; Schirrmann R; Brandau S Methods Mol Biol; 2021; 2236():1-7. PubMed ID: 33237535 [TBL] [Abstract][Full Text] [Related]
2. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Lang S; Bruderek K; Kaspar C; Höing B; Kanaan O; Dominas N; Hussain T; Droege F; Eyth C; Hadaschik B; Brandau S Clin Cancer Res; 2018 Oct; 24(19):4834-4844. PubMed ID: 29914893 [No Abstract] [Full Text] [Related]
3. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells. Nagatani Y; Funakoshi Y; Suto H; Imamura Y; Toyoda M; Kiyota N; Yamashita K; Minami H J Cancer Res Ther; 2021; 17(4):1093-1100. PubMed ID: 34528569 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Generation of Human Neutrophilic Myeloid-Derived Suppressor Cells. Singh A; Rieber N Methods Mol Biol; 2021; 2236():77-83. PubMed ID: 33237542 [TBL] [Abstract][Full Text] [Related]
5. Isolation and Phenotyping of Splenic Myeloid-Derived Suppressor Cells in Murine Cancer Models. Sanseviero E; Kim R; Gabrilovich DI Methods Mol Biol; 2021; 2236():19-28. PubMed ID: 33237537 [TBL] [Abstract][Full Text] [Related]
6. Isolation of Human Circulating Myeloid-Derived Suppressor Cells and Analysis of Their Immunosuppressive Activity. Bruderek K; Schirrmann R; Brandau S Methods Mol Biol; 2021; 2236():43-56. PubMed ID: 33237539 [TBL] [Abstract][Full Text] [Related]
7. Circulating Myeloid-Derived Suppressor Cell Subsets in Patients with Colorectal Cancer - Exploratory Analysis of Their Biomarker Potential. Fědorová L; Pilátová K; Selingerová I; Bencsiková B; Budinská E; Zwinsová B; Brychtová V; Langrová M; Šefr R; Valík D; Zdražilová Dubská L Klin Onkol; 2018; 31(Suppl 2):88-92. PubMed ID: 31023030 [TBL] [Abstract][Full Text] [Related]
8. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. Cassetta L; Bruderek K; Skrzeczynska-Moncznik J; Osiecka O; Hu X; Rundgren IM; Lin A; Santegoets K; Horzum U; Godinho-Santos A; Zelinskyy G; Garcia-Tellez T; Bjelica S; Taciak B; Kittang AO; Höing B; Lang S; Dixon M; Müller V; Utikal JS; Karakoç D; Yilmaz KB; Górka E; Bodnar L; Anastasiou OE; Bourgeois C; Badura R; Kapinska-Mrowiecka M; Gotic M; Ter Laan M; Kers-Rebel E; Król M; Santibañez JF; Müller-Trutwin M; Dittmer U; de Sousa AE; Esendağlı G; Adema G; Loré K; Ersvær E; Umansky V; Pollard JW; Cichy J; Brandau S J Immunother Cancer; 2020 Sep; 8(2):. PubMed ID: 32907925 [TBL] [Abstract][Full Text] [Related]
9. Plasticity of myeloid-derived suppressor cells in cancer. Tcyganov E; Mastio J; Chen E; Gabrilovich DI Curr Opin Immunol; 2018 Apr; 51():76-82. PubMed ID: 29547768 [TBL] [Abstract][Full Text] [Related]
10. Flow cytometry-based immunophenotyping of myeloid-derived suppressor cells in human breast cancer patient blood samples. Lee EJ; Jung S; Park KH; Park SI J Immunol Methods; 2022 Nov; 510():113348. PubMed ID: 36058258 [TBL] [Abstract][Full Text] [Related]
11. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Karin N Front Immunol; 2020; 11():557586. PubMed ID: 33193327 [TBL] [Abstract][Full Text] [Related]
12. Early Posttransplant Mobilization of Monocytic Myeloid-derived Suppressor Cell Correlates With Increase in Soluble Immunosuppressive Factors and Predicts Cancer in Kidney Recipients. Utrero-Rico A; Laguna-Goya R; Cano-Romero F; Chivite-Lacaba M; Gonzalez-Cuadrado C; Rodríguez-Sánchez E; Ruiz-Hurtado G; Serrano A; Fernández-Ruiz M; Justo I; González E; Andrés A; Paz-Artal E Transplantation; 2020 Dec; 104(12):2599-2608. PubMed ID: 32068661 [TBL] [Abstract][Full Text] [Related]
13. Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Alfaro C; Teijeira A; Oñate C; Pérez G; Sanmamed MF; Andueza MP; Alignani D; Labiano S; Azpilikueta A; Rodriguez-Paulete A; Garasa S; Fusco JP; Aznar A; Inogés S; De Pizzol M; Allegretti M; Medina-Echeverz J; Berraondo P; Perez-Gracia JL; Melero I Clin Cancer Res; 2016 Aug; 22(15):3924-36. PubMed ID: 26957562 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic Characterization and Isolation of Myeloid-Derived Suppressor Cells. Reuven O; Mikula I; Ashkenazi-Preiser H; Twaik N; Ben-Meir K; Meirow Y; Daniel L; Kariv G; Kurd M; Baniyash M Curr Protoc; 2022 Oct; 2(10):e561. PubMed ID: 36214619 [TBL] [Abstract][Full Text] [Related]