These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33237567)

  • 1. Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications.
    Sequeira RC; Criswell T; Atala A; Yoo JJ
    Tissue Eng Regen Med; 2020 Dec; 17(6):787-800. PubMed ID: 33237567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of microfluidics in sperm isolation and in vitro fertilization].
    Li FF; Wang XY; Zhou SM; You F
    Zhonghua Nan Ke Xue; 2014 May; 20(5):452-9. PubMed ID: 24908739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in microfluidic technology for sperm screening and in vitro fertilization.
    Ma J; Xie Q; Zhang Y; Xiao Q; Liu X; Qiao C; Tian Y
    Anal Bioanal Chem; 2024 Jul; 416(16):3717-3735. PubMed ID: 38189916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of microfluidic technologies to human assisted reproduction.
    Smith GD; Takayama S
    Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics: The future of sperm selection in assisted reproduction.
    Jahangiri AR; Ziarati N; Dadkhah E; Bucak MN; Rahimizadeh P; Shahverdi A; Sadighi Gilani MA; Topraggaleh TR
    Andrology; 2024 Sep; 12(6):1236-1252. PubMed ID: 38148634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances of microfluidic technology in reproductive biology.
    Nikshad A; Aghlmandi A; Safaralizadeh R; Aghebati-Maleki L; Warkiani ME; Khiavi FM; Yousefi M
    Life Sci; 2021 Jan; 265():118767. PubMed ID: 33212151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High FSH decreases the developmental potential of mouse oocytes and resulting fertilized embryos, but does not influence offspring physiology and behavior in vitro or in vivo.
    Li M; Zhao Y; Zhao CH; Yan J; Yan YL; Rong L; Liu P; Feng HL; Yu Y; Qiao J
    Hum Reprod; 2013 May; 28(5):1309-23. PubMed ID: 23411618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for mammalian embryo culture and selection: where do we stand now?
    Le Gac S; Nordhoff V
    Mol Hum Reprod; 2017 Apr; 23(4):213-226. PubMed ID: 27678484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing male gamete genome integrity to ameliorate poor assisted reproductive technology clinical outcome.
    Kocur OM; Xie P; Souness S; Cheung S; Rosenwaks Z; Palermo GD
    F S Sci; 2023 Feb; 4(1):2-10. PubMed ID: 35973556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics for gametes, embryos, and embryonic stem cells.
    Smith GD; Swain JE; Bormann CL
    Semin Reprod Med; 2011 Jan; 29(1):5-14. PubMed ID: 21207330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.
    Yanez LZ; Camarillo DB
    Mol Hum Reprod; 2017 Apr; 23(4):235-247. PubMed ID: 27932552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the use of microfluidic sperm sorting for the sperm selection improve in vitro fertilization success rates in male factor infertility?
    Ozcan P; Takmaz T; Yazici MGK; Alagoz OA; Yesiladali M; Sevket O; Ficicioglu C
    J Obstet Gynaecol Res; 2021 Jan; 47(1):382-388. PubMed ID: 33197963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on Microfluidics: An Aid to Assisted Reproductive Technology.
    Alias AB; Huang HY; Yao DJ
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice.
    Horta F; Catt S; Ramachandran P; Vollenhoven B; Temple-Smith P
    Hum Reprod; 2020 Mar; 35(3):529-544. PubMed ID: 32108237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research?
    Sharma S; Venzac B; Burgers T; Le Gac S; Schlatt S
    Mol Hum Reprod; 2020 Mar; 26(3):179-192. PubMed ID: 31977028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revolutionizing the female reproductive system research using microfluidic chip platform.
    Yan J; Wu T; Zhang J; Gao Y; Wu JM; Wang S
    J Nanobiotechnology; 2023 Dec; 21(1):490. PubMed ID: 38111049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryobiology in human assisted reproductive technology. Would Hippocrates approve?
    Bredkjaer HE; Grudzinskas JG
    Early Pregnancy (Cherry Hill); 2001 Jul; 5(3):211-3. PubMed ID: 11753534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic technology for assisted reproduction.
    Beebe D; Wheeler M; Zeringue H; Walters E; Raty S
    Theriogenology; 2002 Jan; 57(1):125-35. PubMed ID: 11775965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices.
    Ahmadkhani N; Hosseini M; Saadatmand M; Abbaspourrad A
    J Assist Reprod Genet; 2022 Jan; 39(1):19-36. PubMed ID: 35034216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of follicle flushing during oocyte retrieval in assisted reproductive technologies: a systematic review and meta-analysis.
    Levy G; Hill MJ; Ramirez CI; Correa L; Ryan ME; DeCherney AH; Levens ED; Whitcomb BW
    Hum Reprod; 2012 Aug; 27(8):2373-9. PubMed ID: 22647450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.