These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33237773)

  • 1. Reciprocal Coupling in Chemically Fueled Assembly: A Reaction Cycle Regulates Self-Assembly and Vice Versa.
    Kriebisch BAK; Jussupow A; Bergmann AM; Kohler F; Dietz H; Kaila VRI; Boekhoven J
    J Am Chem Soc; 2020 Dec; 142(49):20837-20844. PubMed ID: 33237773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative assemblies that inhibit their deactivation.
    Rieß B; Wanzke C; Tena-Solsona M; Grötsch RK; Maity C; Boekhoven J
    Soft Matter; 2018 Jun; 14(23):4852-4859. PubMed ID: 29845136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5(4
    Chen X; Stasi M; Rodon-Fores J; Großmann PF; Bergmann AM; Dai K; Tena-Solsona M; Rieger B; Boekhoven J
    J Am Chem Soc; 2023 Mar; 145(12):6880-6887. PubMed ID: 36931284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating Chemically Fueled Peptide Assemblies by Molecular Design.
    Dai K; Fores JR; Wanzke C; Winkeljann B; Bergmann AM; Lieleg O; Boekhoven J
    J Am Chem Soc; 2020 Aug; 142(33):14142-14149. PubMed ID: 32787245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Design of Chemically Fueled Peptide-Polyelectrolyte Coacervate-Based Assemblies.
    Späth F; Donau C; Bergmann AM; Kränzlein M; Synatschke CV; Rieger B; Boekhoven J
    J Am Chem Soc; 2021 Mar; 143(12):4782-4789. PubMed ID: 33750125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes.
    Schwarz PS; Tena-Solsona M; Dai K; Boekhoven J
    Chem Commun (Camb); 2022 Jan; 58(9):1284-1297. PubMed ID: 35014639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological transitions in chemically fueled self-assembly.
    Dai K; Tena-Solsona M; Rodon Fores J; Bergmann AM; Boekhoven J
    Nanoscale; 2021 Dec; 13(47):19864-19869. PubMed ID: 34825692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanosine-Based Self-Assembly as an Enantioselective Catalyst Scaffold.
    Bai J; Sun X; Wang H; Li C; Qiao R
    J Org Chem; 2020 Feb; 85(4):2010-2018. PubMed ID: 31935325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site.
    Hamel E; Lin CM
    Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly.
    Lin CM; Hamel E
    Biochemistry; 1987 Nov; 26(22):7173-82. PubMed ID: 3427067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of microtubule protein: role of guanosine di- and triphosphate nucleotides.
    Carlier MF; Pantaloni D
    Biochemistry; 1982 Mar; 21(6):1215-24. PubMed ID: 7074077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of tubulin assembly: guanosine 5'-triphosphate hydrolysis decreases the rate of microtubule depolymerization.
    Bonne D; Pantaloni D
    Biochemistry; 1982 Mar; 21(5):1075-81. PubMed ID: 7074050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly.
    Singh N; Formon GJM; De Piccoli S; Hermans TM
    Adv Mater; 2020 May; 32(20):e1906834. PubMed ID: 32064688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization.
    Carlier MF; Pantaloni D
    Biochemistry; 1981 Mar; 20(7):1918-24. PubMed ID: 7225365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GTP analogues interact with the tubulin exchangeable site during assembly and upon binding.
    Mejillano MR; Barton JS; Nath JP; Himes RH
    Biochemistry; 1990 Feb; 29(5):1208-16. PubMed ID: 2108723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro microtubule assembly regulation by divalent cations and nucleotides.
    Gaskin F
    Biochemistry; 1981 Mar; 20(5):1318-22. PubMed ID: 7225331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of tubulin with guanine nucleotides that have paclitaxel-like effects on tubulin assembly: 2',3'-dideoxyguanosine 5'-[alpha,beta-methylene]triphosphate, guanosine 5'-[alpha,beta-methylene]triphosphate, and 2',3'-dideoxyguanosine 5'-triphosphate.
    Hamel E; Vaughns J; Getahun Z; Johnson R; Lin CM
    Arch Biochem Biophys; 1995 Oct; 322(2):486-99. PubMed ID: 7574725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin.
    Roychowdhury S; Gaskin F
    Biochemistry; 1986 Dec; 25(24):7847-53. PubMed ID: 3542038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemically fueled supramolecular glue for self-healing gels.
    Rodon-Fores J; Würbser MA; Kretschmer M; Rieß B; Bergmann AM; Lieleg O; Boekhoven J
    Chem Sci; 2022 Oct; 13(38):11411-11421. PubMed ID: 36320578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.