These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 33237980)
1. Thermal and non-thermal processing of red-fleshed apple: how are (poly)phenol composition and bioavailability affected? Yuste S; Macià A; Motilva MJ; Prieto-Diez N; Romero MP; Pedret A; Solà R; Ludwig IA; Rubió L Food Funct; 2020 Dec; 11(12):10436-10447. PubMed ID: 33237980 [TBL] [Abstract][Full Text] [Related]
2. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying. Yan H; Kerr WL J Sci Food Agric; 2013 Apr; 93(6):1499-504. PubMed ID: 23080413 [TBL] [Abstract][Full Text] [Related]
3. Apple peels as a value-added food ingredient. Wolfe KL; Liu RH J Agric Food Chem; 2003 Mar; 51(6):1676-83. PubMed ID: 12617604 [TBL] [Abstract][Full Text] [Related]
4. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Xue J; Su F; Meng Y; Guo Y J Sci Food Agric; 2019 May; 99(7):3381-3390. PubMed ID: 30584804 [TBL] [Abstract][Full Text] [Related]
5. New red-fleshed apple cultivars: a comprehensive review of processing effects, (poly)phenol bioavailability and biological effects. Yuste S; Ludwig IA; Romero MP; Motilva MJ; Rubió L Food Funct; 2022 May; 13(9):4861-4874. PubMed ID: 35419577 [TBL] [Abstract][Full Text] [Related]
6. Phytochemical profiles, antioxidant, and antiproliferative activities of red-fleshed apple as affected by in vitro digestion. Li CX; Zhao XH; Zuo WF; Zhang TL; Zhang ZY; Chen XS J Food Sci; 2020 Sep; 85(9):2952-2959. PubMed ID: 32790197 [TBL] [Abstract][Full Text] [Related]
7. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Wojdyło A; Lech K; Nowicka P Molecules; 2020 Nov; 25(23):. PubMed ID: 33255650 [TBL] [Abstract][Full Text] [Related]
8. Phenol metabolic fingerprint and selection of intake biomarkers after acute and sustained consumption of red-fleshed apple versus common apple in humans. The AppleCOR study. Macià A; Romero MP; Yuste S; Ludwig I; Pedret A; Valls RM; Salamanca P; Solà R; José Motilva M; Rubió L Food Chem; 2022 Aug; 384():132612. PubMed ID: 35413774 [TBL] [Abstract][Full Text] [Related]
9. Seasonal Variability of the Phytochemical Composition of New Red-Fleshed Apple Varieties Compared with Traditional and New White-Fleshed Varieties. Bars-Cortina D; Macià A; Iglesias I; Garanto X; Badiella L; Motilva MJ J Agric Food Chem; 2018 Sep; 66(38):10011-10025. PubMed ID: 30176730 [TBL] [Abstract][Full Text] [Related]
10. Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Traditional and New White-Fleshed Varieties. Bars-Cortina D; Macià A; Iglesias I; Romero MP; Motilva MJ J Agric Food Chem; 2017 Mar; 65(8):1684-1696. PubMed ID: 28191939 [TBL] [Abstract][Full Text] [Related]
11. Effect of freeze-drying and air-drying on the content of carotenoids and anthocyanins in stored purple carrot. Macura R; Michalczyk M; Fiutak G; Maciejaszek I Acta Sci Pol Technol Aliment; 2019; 18(2):135-142. PubMed ID: 31256541 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Fate and Cardiometabolic Effects of Phenolic Compounds from Red-Fleshed Apple in Hypercholesterolemic Rats: A Comparative Study with Common White-Fleshed Apple. The AppleCOR Study. Yuste S; Ludwig IA; Romero MP; Piñol-Felis C; Catalán Ú; Pedret A; Valls RM; Fernández-Castillejo S; Motilva MJ; Macià A; Rubió L Mol Nutr Food Res; 2021 May; 65(10):e2001225. PubMed ID: 33851768 [TBL] [Abstract][Full Text] [Related]
13. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. Feng S; Yi J; Li X; Wu X; Zhao Y; Ma Y; Bi J J Agric Food Chem; 2021 Jan; 69(1):7-27. PubMed ID: 33397106 [TBL] [Abstract][Full Text] [Related]
14. Quantification of Flavonoids, Phenols and Antioxidant Potential from Dropped Kumar D; Ladaniya MS; Gurjar M; Kumar S; Mendke S Molecules; 2021 Jul; 26(14):. PubMed ID: 34299432 [TBL] [Abstract][Full Text] [Related]
15. The Use of Antioxidant Potential of Chokeberry Juice in Creating Pro-Healthy Dried Apples by Hybrid (Convection-Microwave-Vacuum) Method. Kowalska J; Marzec A; Domian E; Galus S; Ciurzyńska A; Lenart A; Kowalska H Molecules; 2020 Dec; 25(23):. PubMed ID: 33276446 [TBL] [Abstract][Full Text] [Related]
16. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Chong CH; Law CL; Figiel A; Wojdyło A; Oziembłowski M Food Chem; 2013 Dec; 141(4):3889-96. PubMed ID: 23993562 [TBL] [Abstract][Full Text] [Related]
17. Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. Loncaric A; Dugalic K; Mihaljevic I; Jakobek L; Pilizota V J Agric Food Chem; 2014 Feb; 62(7):1674-82. PubMed ID: 24471409 [TBL] [Abstract][Full Text] [Related]
18. Differential effects of phenolic extracts from red-fleshed apple peels and flesh induced G1 cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 cells. Li CX; Lin ZX; Zhao XH; Zuo WF; Wang N; Zhang ZY; Chen XS J Food Sci; 2021 Sep; 86(9):4209-4222. PubMed ID: 34392532 [TBL] [Abstract][Full Text] [Related]
19. Validation of Dried Blood Spot Cards to Determine Apple Phenolic Metabolites in Human Blood and Plasma After an Acute Intake of Red-Fleshed Apple Snack. Yuste S; Macià A; Ludwig IA; Romero MP; Fernández-Castillejo S; Catalán Ú; Motilva MJ; Rubió L Mol Nutr Food Res; 2018 Dec; 62(23):e1800623. PubMed ID: 30328671 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the formation of furfural compounds in apple products treated with pasteurization and high pressure processing. Gao Q; Wang Y; Li Y; Hou J; Liang Y; Zhang Z Food Res Int; 2024 Aug; 190():114546. PubMed ID: 38945559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]