These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33238037)

  • 21. Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC-MS with thiol derivatization.
    Miles CO; Sandvik M; Nonga HE; Rundberget T; Wilkins AL; Rise F; Ballot A
    Toxicon; 2013 Aug; 70():21-31. PubMed ID: 23567039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined LC-MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle.
    Teta R; Della Sala G; Glukhov E; Gerwick L; Gerwick WH; Mangoni A; Costantino V
    Environ Sci Technol; 2015 Dec; 49(24):14301-10. PubMed ID: 26567695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry.
    Sanz M; Andreote AP; Fiore MF; Dörr FA; Pinto E
    Mar Drugs; 2015 Jun; 13(6):3892-919. PubMed ID: 26096276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell density-dependent oligopeptide production in cyanobacterial strains.
    Pereira DA; Giani A
    FEMS Microbiol Ecol; 2014 Apr; 88(1):175-83. PubMed ID: 24410818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin.
    Beversdorf LJ; Rude K; Weirich CA; Bartlett SL; Seaman M; Kozik C; Biese P; Gosz T; Suha M; Stempa C; Shaw C; Hedman C; Piatt JJ; Miller TR
    Water Res; 2018 Sep; 140():280-290. PubMed ID: 29729580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnostic fragmentation filtering for the discovery of new chaetoglobosins and cytochalasins.
    Walsh JP; Renaud JB; Hoogstra S; McMullin DR; Ibrahim A; Visagie CM; Tanney JB; Yeung KK; Sumarah MW
    Rapid Commun Mass Spectrom; 2019 Jan; 33(1):133-139. PubMed ID: 30325552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806.
    Martin C; Oberer L; Ino T; König WA; Busch M; Weckesser J
    J Antibiot (Tokyo); 1993 Oct; 46(10):1550-6. PubMed ID: 8244882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive multi-technique approach reveals the high diversity of microcystins in field collections and an associated isolate of Microcystis aeruginosa from a Turkish lake.
    Yilmaz M; Foss AJ; Miles CO; Özen M; Demir N; Balcı M; Beach DG
    Toxicon; 2019 Sep; 167():87-100. PubMed ID: 31181296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-occurrence of microcystin and microginin congeners in Brazilian strains of Microcystis sp.
    Carneiro RL; Dörr FA; Dörr F; Bortoli S; Delherbe N; Vásquez M; Pinto E
    FEMS Microbiol Ecol; 2012 Dec; 82(3):692-702. PubMed ID: 22757607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Woronichinia naegeliana: A common nontoxigenic component of temperate freshwater cyanobacterial blooms with 30% of its genome in transposons.
    Dreher TW; Matthews R; Davis EW; Mueller RS
    Harmful Algae; 2023 Jun; 125():102433. PubMed ID: 37220973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium
    Johansson E; Legrand C; Björnerås C; Godhe A; Mazur-Marzec H; Säll T; Rengefors K
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31805656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological interaction of Daphnia and Microcystis with regard to cyanobacterial secondary metabolites.
    Sadler T; von Elert E
    Aquat Toxicol; 2014 Nov; 156():96-105. PubMed ID: 25173836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020.
    Gademann K; Portmann C; Blom JF; Zeder M; Jüttner F
    J Nat Prod; 2010 May; 73(5):980-4. PubMed ID: 20405925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variable Cyanobacterial Toxin and Metabolite  Profiles across Six Eutrophic Lakes of Differing  Physiochemical Characteristics.
    Beversdorf LJ; Weirich CA; Bartlett SL; Miller TR
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806.
    Bister B; Keller S; Baumann HI; Nicholson G; Weist S; Jung G; Süssmuth RD; Jüttner F
    J Nat Prod; 2004 Oct; 67(10):1755-7. PubMed ID: 15497957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.
    Ferranti P; Nasi A; Bruno M; Basile A; Serpe L; Gallo P
    Rapid Commun Mass Spectrom; 2011 May; 25(9):1173-83. PubMed ID: 21488115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global Metabolomic Characterizations of
    Le Manach S; Duval C; Marie A; Djediat C; Catherine A; Edery M; Bernard C; Marie B
    Front Microbiol; 2019; 10():791. PubMed ID: 31057509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of electrospray tandem mass spectrometry for identification of microcystins during a cyanobacterial bloom event.
    Frias HV; Mendes MA; Cardozo KH; Carvalho VM; Tomazela D; Colepicolo P; Pinto E
    Biochem Biophys Res Commun; 2006 Jun; 344(3):741-6. PubMed ID: 16631112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyanobacterial Toxins and Cyanopeptide Transformation Kinetics by Singlet Oxygen and pH-Dependence in Sunlit Surface Waters.
    Natumi R; Dieziger C; Janssen EM
    Environ Sci Technol; 2021 Nov; 55(22):15196-15205. PubMed ID: 34714625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions.
    Briand E; Bormans M; Gugger M; Dorrestein PC; Gerwick WH
    Environ Microbiol; 2016 Feb; 18(2):384-400. PubMed ID: 25980449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.